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Introduction 

In fish studies, animal movement information provides funda-
mental knowledge for understanding fish ecology. Advanced 
biological information is also important for the construction of 
fishery management plans (Crossin et al., 2017) and for reduc-

ing disease and stress in individuals in aquaculture (Mei et al., 
2022). Before technical advances in electronic tags were made, 
researchers collected information from direct observations at 
sea by fishing or from mark-recapture data by repeated mea-
sures on the same individuals (Hanselman et al., 2014; Low-
erre-Barbieri et al., 2019). Since the first tracking of salmon with 
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Abstract
The bio-logging method could be a valuable approach to studying the underwater movement of marine fish. We investigated 
the horizontal and vertical movement patterns of two yellowtails Seriola quinqueradiata weighing 8.7 kg and 9.5 kg with a pop-
up satellite archival tag from October 2020 to January 2021 in the East Sea of Korea. Our results showed that a yellowtail mi-
grated northward in October and November, and then shifted southward in mid-December. The average swimming depth and 
temperature of the fish monitored over 82 days were 24.9 ± 9.3 m (average ± SD) and 16.5 ± 1.9℃, respectively, and the total 
traveled distance was 1,172.4 km. The fish swam significantly deeper during the daytime (33.70 ± 14.80 m) than at nighttime 
(20.65 ± 8.44 m) from November to December (p < 0.05). These results suggest that the horizontal migratory route of yellowtails 
in accordance with the East Korea Warm Current which is the main branch of Tsushima Warm Current in the fall and early winter 
seasons, and showed significant diel vertical movement patterns from November to December.    
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individual biotelemetric tags, radio-transmitting tags, a global 
positioning system (GPS), and pop-up satellite archival tags 
(PSAT) have been developed to follow underwater movements 
(reviewed in Lowerre-Barbieri et al., 2019).

Tracking fish movement was often called ‘telemetry’ be-
cause the technique was based on transmitting data (acoustic 
or radio signals) from individual tags to the receiver (reviewed 
in Brownscombe et al., 2019). Acoustic or radio transmitters on 
animals can provide location signals by communicating with 
fixed stations or mobile receivers (see Hussey et al., 2015). Re-
cently, ‘bio-logging’ has been widely used for data logging and 
transmission of animal movement research across different taxa 
(Chung et al., 2021), including in fish (Lowerre-Barbieri et al., 
2019). Hereafter, the term ‘bio-logging’ is used throughout this 
study to indicate fish-tracking studies using devices.

Yellowtail (Seriola quinqueradiata) is a temperate migratory 
fish in the Northwest Pacific Ocean (Dong et al., 2020; Jeong et 
al., 2016). Previous studies from multiple sampling of eggs and 
juveniles revealed that they are distributed from the East China 
Sea continental shelf to the Pacific coast of Japan (Tian et al., 
2012) and is known to show large migratory routes for feeding 
and south for spawning (Sassa et al., 2020). In East Asia, it is 
one of the most important species for aquaculture species of 
its high edible and commercial value (Sicuro & Luzzana, 2016) 
but the amount of yellowtail catches is recently changing (Tian 
et al., 2012) and the detailed GPS tracking studies have been 
limited. Therefore, it is required to collect data on monitoring of 
continuous movement and seasonal distribution of the species. 
In this study, we aimed to investigate the movement pattern of 
yellowtail inhabiting the East Sea from October to December. 
We confirmed the relationship between the migration route 
of the yellowtail and sea surface temperature. Additionally, we 
examined how the month and solar elevation influence their 
swimming depth.

Materials and Methods

Deployment of pop-up satellite archival tag (PSAT)s on yel-
lowtails
On 14th October 2022, we deployed PSATs (miniPAT, Wildlife 
Computers, Redmond, WA, USA), 118 mm (length) and 38 
mm (diameter), 61 g (weight in air) on two yellowtails weighing 
8.7 kg and 9.5 kg (Fig. 1) in South Sea of Korea (latitude: 35°0'4'' 
N, longitude: 129°10'19'' E). The fish were purchased from a 
commercial fishery (Yookilsusan, Tongyeong, Korea) on March 

19 2020, and were kept before deployment in a sea cage (6 m 
× 12 m × 6 m) at Tongyeong Megacosm Test Station operated 
by the Korea Institute of Ocean Science and Technology. This 
PSAT tag provides depth (range: 0–1,700 m, resolution: 0.5 m, 
accuracy: ± 1% of reading) and temperature data (range: –40℃ 
to 60℃, resolution: 0.05℃, accuracy: ± 0.1℃) with light sensor 
for geolocation (for a detailed spec, see Wildlife Computers 
Webpage, https://wildlifecomputers.com/our-tags/pop-up-
satellite-tags-fish/minipat/). For testing the PSAT deployment, 
captive yellowtails were previously tested and confirmed with 
physiological measurements for tagging (Oh & Jeong, 2021). We 
set the miniPAT device to collect depth and temperature data at 
5-minute intervals. The daily sunset and sunrise data are record-
ed based on the calculations from the collected light data. Also, 
the mixed layer temperature, depth and temperature profile, 
and histograms are summarized and recorded every 12 hours. 
After the release of the fish with the attached device, the equip-
ment will be activated when the fish reaches a depth of 5 meters 
or deeper. The device has a pre-set automatic release function 
that causes it to float to the surface after 90 days from the time it 
was attached to the fish. When the device floats to the surface, it 
uploads the collected data through ARGOS satellites.

Data analysis
We estimated the daily location of each fish using Wildlife com-
puters GPE3, which is based on the hidden Markov model meth-
ods of Pedersen et al. (2011) and Basson et al. (2016). The GPE3, 
global position estimator was developed by the manufacturer of 
the miniPAT device we used in our research. It uses observation-
al data such as sunrise and sunset data calculated from collected 
light data, as well as sea surface temperature and maximum dive 
depth data, to estimate the fish’s daily location (Hill & Braun, 
2001; Wildlife Computers, 2012). The estimator also utilizes a 
random walk movement model. In addition, we inputted the 
device deployment date and location, as well as the first ARGOS 
location data to identify the pop-up date and location. Based on 
a previous yellowtail bio-logging study (Kim et al., 2021), we set 
a typical traveling speed of 1.0 m/s for yellowtail fish.

The collected depth and temperature data with depths of 1.5 
meters or shallower were excluded from the analysis. We cal-
culated the daily average depth and temperature based on UTC 
+ 9 time zone. values for depth and temperature. Then, based 
on daily data, we calculated the overall average depth and tem-
perature, along with the monthly averages for temperature and 
depth. Therefore, we used the ‘solrad’ package (Seyednasrollah, 
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2018) in R 4.2.0 and interpolated location data about yellowtail 
to calculate solar altitude at each recorded time with dive depth 
data. We defined time periods when the solar elevation was 
greater than 0 as “daytime” and the time periods when it was 
less than or equal to 0 as “nighttime”.

Environmental data
To understand the movement of yellowtail, we considered en-
vironmental factors such as sea surface temperatures, length of 
daytime, and length of nighttime. The sea surface temperatures 
of the East Sea were obtained from the MODIS of the Aqua 
satellite. We used the monthly ocean color map of SSTs for the 
period from October 2020 to December 2020 in the geographi-
cal range of 32°N–42°N and 124°E– 133°E.

Results

For the two yellowtails, we acquired 12 days of recording from 
ID198931 from 14 October to 26 October and 82 days of con-

tinuous recording from ID198933 from 14 October to 4 Janu-
ary (Fig. 2A). The average swimming depth for ID198931 and 
ID198933 were 8.20 ± 2.56 m and 24.95 ± 9.33 m, respectively, 
and the average ambient temperature for both was 20.65 ± 
0.36 and 16.52 ± 1.86 degrees Celsius, respectively. ID198931 
traveled an average of 15.3 km per day and for 12 days, traveled 
176.2 km. ID198933 traveled an average of 14.7 km per day 
and a total of 1172.4 km over a period of 82 days (Table 1). We 
examined the monthly tracking data and found that ID 198933 
fish migrated northward to latitude 38°37'30'' in October when 
the ocean surface temperature was warm (Fig. 2B and 2C). In 
December, during the period of the cold sea surface that sea 
surface, the fish moved southward (Fig. 2D). The collected tem-
perature data exhibited a similar pattern, showing lower tem-
peratures in November and December compared to October 
(Fig. 3B).

To estimate the effects of time and seasonal change in 
swimming depth in ID 198933, we conducted a general linear 
model (explanatory variable: month [October or November or 

Fig. 1. A schematic figure for tracking yellowtails with pop-up satellite archival tag (PSAT). PSAT-equipped yellowtails (n = 2) 
were tracked from October 2020 to January 2021 in the South and East Seas of Korea.
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December] and time [day or night], and responsible variable: 
depth) with Tukey post-hoc test. We found that the average 
depth varies every month. In November, the average swimming 
depth was 22.28 ± 9.92 m, however October (26.47 ± 8.34 m) 

and December (27.31 ± 17.53 m) showed deeper depth (Fig. 
3A). Also we found that swimming depth in the daytime (33.70 
± 14.80 m) is deeper than those in nighttime (20.65 ± 8.44 m; 
between day and night, p < 0.001, z = –42.42, Fig. 3C). Then 

Fig. 2. A map of two yellowtail tracks from October 2020 to January 2021 in the South and East Seas of Korea. A: Estimated 
locations were presented by interpolation [ID198931 (green) and ID198933 (yellow)]. B–D: Monthly tracking data with monthly 
(October, November, and December) sea surface temperature color map.

Table 1. Tracking results of two yellowtails (ID198931 and 198933) from October 2020 to January 2021
ID Tracking period 

(days)
Average swimming depth 
(m)

Average ambient temperature 
(℃)

Total travel distance
(km)

Average distance per day 
(km/day)

198931 12d 18h 12m 8.20 ± 2.56 20.65 ± 0.36 176.2 15.3

198933 82d 18h 35m 24.95 ± 9.33 16.52 ± 1.86 1,172.4 14.7
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we conducted a general linear model only with daytime depth 
(explanatory variable: month [October or November or De-
cember], and responsible variable: daytime depth) or nighttime 
depth (explanatory variable: month [October or November or 

December], and responsible variable: nighttime depth). With 
this separated model, we found that daytime swimming depth 
in December (43.74 ± 18.16 m) is deeper than those in October 
(29.04 ± 9.06 m) and November (28.24 ± 9.52 m) (between Oc-

Fig. 3. Boxplots of depth data from a long-monitored yellowtail (ID 198933) from October 2020 to December 2020 in the 
South and East Seas of Korea. Boxplots of the monthly depth (A), monthly temperature (B), day/night time depth (C), monthly 
depth during daytime (D), and monthly depth during nighttime (E). Yellow boxes mean daytime data and dark blue boxes mean 
nighttime data. Asterisks indicate significance (p < 0.001).
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tober and December, p < 0.001, z = –19.470; between November 
and December, p < 0.001, z = –21.383, Fig. 3D) and nighttime 
swimming depth became shallower from October (25.02 ± 7.53 
m) to December (November 19.70 ± 8.93 m, December 17.73 ± 
6.71 m; between October and November, p < 0.001, z = 15.501 
November and December, p < 0.001, z = 6.748; between Octo-
ber and December, p < 0.001, z = 20.082, Fig. 3E).

From the long-monitored individual (ID198933), we 
further investigated its monthly changes and diel swimming 
behavior (Fig. 4). We compared the average daily depth values 
for daytime and nighttime within each month (October, No-
vember, and December) using paired t-tests (Fig. 4A, 3C, and 
3D). Compared to October, the swimming depths during both 
daytime and nighttime showed significant differences in No-
vember and December. In November, the average swimming 
depth during daytime was 27.07 ± 9.16 m (average ± SD) and 
the average swimming depth during nighttime was 20.10 ± 8.05 
m (average ± SD; between daytime and nighttime in October, t 
= 4.8872, p = 0.0003) and in December, mean depth in daytime 
was 42.42 ± 15.29 m (average ± SD) and mean depth in night-
time was 22.30 ± 4.84 m (average ± SD; between daytime and 
nighttime in December, t = 3.6037, p = 0.0069). Furthermore, 
we divided daily depth data for October, November, and De-
cember into hourly intervals (24 hours) and represented them 
(Fig. 4D, 4E, and 4F). This boxplot shows deeper swimming 
depth during daytime compared with nighttime in November 
and December.

Discussion

According to our research, released yellowtail moves northward 
during October and mid-November. At latitude around 38.6 
degrees, it stopped moving northward and exhibited a slow 
swimming speed and then they moved south from mid-De-
cember. We thought the movement track of the ID 198933 fish 
is affected by sea surface temperature (Fig. 2) and also warm 
currents in the East Sea (Fig. 5). Additionally, we investigated 
how swimming depth differed during day and night. A yellow-
tail was distributed deeper during the daytime (Fig. 3C), and 
their swimming depths were deeper in winter (Fig. 3D). Fur-
thermore, there are significant differences in swimming depths 
between day and night which were observed in November and 
December (Fig. 4). In this research, we consider to understand 
horizontal and vertical distribution of yellowtail in the East Sea 
through the analysis of their tracking and depth data.

The distribution of the yellowtail is highly correlated with 
the surface temperature of the ocean (Tian et al., 2012). Accord-
ing to a previous yellowtail tracking study, they migrated north 
for feeding during the Summer and Autumn when the surface 
of the ocean temperature is warm (Furukawa et al., 2020; Ino et 
al., 2008), however, during the winter when water temperature 
decreases, there is a significant migration of yellowtail towards 
southward spawning grounds in the East China Sea and West 
Kyushu regions (Ino et al., 2008; Sassa et al., 2020). Further-
more, the fact that yellowtail is associated with sea surface tem-
perature demonstrates its close relationship with warm currents. 
Several Japanese research teams suggest that the main heat 
source in the East Sea, known as the Tsushima Warm Current 
(TWC), plays a crucial role in the migration route of the yel-
lowtail (Tian et al., 2008, 2012). Additionally, the flow direction 
of the East Korean Warm Current (EKWC), which is the main 
branch of the TWC, overlaps with the October migration route 
of yellowtail in our research (Fig. 5). These results demonstrate 
that the migration and distribution of yellowtail on the East side 
of the Korean peninsula are related to sea surface temperatures 
and the flow of warm currents, EKWC.

There are many studies on the migration pattern of pred-
ator species related to the distribution pattern of prey species 
(Furey et al., 2018). The seasonal distribution of yellowtails is 
also affected by their prey species. In the East Sea, there are 
many pelagic small species such as Japanese common squid 
(Todarodes pacificus), Japanese anchovy (Engraulis japonicus), 
and horse mackerel (Trachurus japonicas) which are the main 
prey for yellowtail (Tian et al., 2008). Particularly, the Japa-
nese common squid prefers the East Sea region from June to 
November (Alabia et al., 2016) and their monthly distribution 
patterns have a correlation with the monthly variations of the 
northern boundary of the TWC (Choi et al., 2008). Japanese 
anchovies are also sensitive to changes in oceanographic condi-
tions such as ocean temperature (Jung et al., 2014), and exhibit 
different distribution patterns depending on the season (Bang 
et al., 2022). These seasonal distribution changes of the prey 
species could affect habitat selection and migration behavior of 
yellowtails, and future research on these of the East Sea of Korea 
is required.

In our research, yellowtails exhibited different swimming 
depths during day and night (Fig. 4), which can be explained 
by following prey species that display diel vertical migration. 
Zooplankton is the most prominent example which shows diel 
vertical migration patterns (Hays, 2003). It results in predator 
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Fig. 4. Diel vertical migration pattern of the long monitored yellowtail (ID 198933) from October 2020 to December 2020. 
A–C: Boxplots of monthly day/night time depth from October 2020 to December 2020. Asterisks indicate significance (each one, 
two, and three asterisk means p-value < 0.05, p-value < 0.01, and p-value < 0.001). D–F: Boxplots of the hourly diving depths during 
October (D), November (E), and December 2020 (F). The daytime and nighttime were determined by sunrise and sunset time. The 
yellow background means daytime and the gray background means nighttime. The orange background represents the time period 
from the sunrise/sunset time on the longest daytime of each month (the first day of each month) to the sunrise/sunset time on 
the shortest daytime of each month (the last day of each month). G: Schematic figure about Diel vertical migration of yellowtail in 
December.
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avoidance during the daytime in deep water and feeding be-
havior during the night in shallow surface water (van Haren & 
Compton, 2013). Recent studies have also revealed diel vertical 
migration in various fish and shark species (Andrzejaczek et al., 
2021; Dypvik et al., 2012a). Lanternfish (Benthosema glaciale), a 
key species in polar ecosystems, exhibit diel migration patterns 
depending on the movement of seasonally migrating zooplank-
ton (Dypvik et al., 2012b). Whale sharks, the giant plankton 
hunter, also have a diel vertical migration pattern, and it might 
be influenced by the distribution of their zooplankton prey (An-
drzejaczek et al., 2021). Furthermore, diel vertical migration has 

been observed in various pelagic fish and shark species, such as 
the bigeye thresher shark (Coelho et al., 2015; Preti et al., 2008) 
and blue shark (Stevens et al., 2010). Especially, various small 
pelagic species including common squid, the main prey source 
of yellowtail, displayed a vertical migration pattern (Kawabata 
et al., 2006) which could lead to frequent short dives of yellow-
tail through the deep thermocline layer (Furukawa et al., 2020).

A previous study was reported to track a yellowtail near 
Jeju Island in the South Sea of Korea for 40 days in December 
and January (Kim et al., 2021). It also shows that the yellowtail 
is diving deeper during the day. This suggests that yellowtails 

Fig. 5. Representing the ocean current direction in the East Sea with long-term tracking data of ID 198933. The red arrow 
indicates the Tsushima Warm Current (TWC) and East Korea Warm Current (EKWC) which is the main branch of TWC. The blue arrow 
indicates North Korea Cold Current (NKCC) originated from the Liman Cold Current.
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would have diel swimming behavior, at least in winter. Although 
the tracking area did not overlap with ours and the period was 
relatively short, the earlier study near Jeju Island presented 
deeper (40–70 m depth and maximally up to 170 m in Kim et 
al. [2021]; 10–40 m depth and maximally 89 m in our study). 
Such a difference could be related to their migration swimming. 
We had 1,170 km of total traveling to the north along the East 
Sea coast for migration while the earlier study individual re-
mained near Jeju Island (Kim et al., 2021). Thus, we suspect that 
our yellowtail had a migratory swimming during winter and it 
was reflected to be shallower depths for the tracking period.

Recent climate change could have significant impacts on 
the marine ecosystem of the East Sea (Lenoir et al., 2020). The 
effects of climate change on sea surface temperature have been 
widely observed across numerous marine regions (Belkin, 
2009). In particular, the East Sea exhibited a consistent warm-
ing trend from 1982 to 2018 (Lee & Park, 2019). As previously 
discussed, the distribution of various marine species inhabiting 
the East Sea is related to sea surface temperature (Alabia et al., 
2016; Jung et al., 2014). Therefore, the warming trend in ocean 
temperature may influence the distribution of these species. Es-
pecially, the distribution of yellowtail, a predatory pelagic fish, 
is affected by annual sea surface temperature variations (Lee 
& Go, 2006; Tian et al., 2012). Bio-logging studies on marine 
species are essential to demonstrate how various fish species re-
spond to ocean warming trends (Lowerre-Barbieri et al., 2019). 
That is why the study of fish movement and distribution using 
bio-logging devices will become increasingly important.

The present experiment indicated that the horizontal mi-
gratory route of yellowtail was in accordance with the route of 
East Korea Warm Current which is the main branch of Tsu-
shima Warm Current in the fall and early winter seasons, and 
showed significant diel vertical movement patterns from No-
vember and December. This information may be helpful to bi-
ologists who study geo-ecological knowledge and are interested 
in directions for future research of marine fish’s relation to prey 
and climate change.
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