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Butyrate and taurine exert a mitigating
effect on the inflamed distal intestine
of European sea bass fed with a high
percentage of soybean meal
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Abstract

Background: Due to the paucity of oceanic resources utilized in the preparation of diets for cultured fish,
commercial feed producers have been trying to replace fishmeal (FM) using alternative protein sources such
as vegetable protein meals (VMs). One of the main drawbacks of using VMs in fish feed is related to the
presence of a variety of anti-nutritional factors, which could trigger an inflammation process in the distal
intestine. This reduces the capacity of the enterocytes to absorb nutrients leading to reduced fish growth
performances.

Methods: We evaluated the mitigating effects of butyrate and taurine used as feed additives on the
morphological abnormalities caused by a soybean meal (SBM)-based diet in the distal intestine of sea bass
(Dicentrarchus labrax). We used three experimental diets, containing the same low percentage of FM and
high percentage of SBM; two diets were supplemented with either 0.2% sodium butyrate or taurine. Histological
changes in the intestine of fish were determined by light and transmission electron microscopy. Infiltration of CD45+

leucocytes in the lamina propria and in the submucosa was assessed by immunohistochemistry. We also quantified
by One-Step Taqman® real-time RT-PCR the messenger RNA (mRNA) abundance of a panel of genes involved in the
intestinal mucosa inflammatory response such as TNFα (tumor necrosis factor alpha) and interleukins: IL-8, IL-1β, IL-10,
and IL-6.

Results: Fish that received for 2 months the diet with 30% soy protein (16.7% SBM and 12.8% full-fat soy) developed
an inflammation in the distal intestine, as confirmed by histological and immunohistochemistry data. The expression
of target genes in the intestine was deeply influenced by the type of fish diet. Fish fed with taurine-supplemented
diet displayed the lowest number of mRNA copies of IL-1β, IL-8, and IL-10 genes in comparison to fish fed with control
or butyrate-supplemented diets. Dietary butyrate caused an upregulation of the TNFα gene transcription. Among the
quantified interleukins, IL-6 was the only one to be not influenced by the diet.

Conclusions: Histological and gene expression data suggest that butyrate and taurine could have a role in normalizing
the intestinal abnormalities caused by the SBM, but the underling mechanisms of action seem different.
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Background
Due to the paucity of oceanic resources utilized in the
preparation of diets for cultured fish, commercial feed
producers have been trying to replace fishmeal (FM) by
using alternative protein sources such as vegetable pro-
tein meals (VMs) (Tacon and Metian 2008). Vegetable
products include soy, canola (rape), corn, wheat, cotton-
seed, lupin, sunflower, flax linseed, and peas. Of these,
soybeans are promising because of their higher protein
content, higher digestibility, and better amino acid pro-
file in comparison to other grains and oilseeds (Hardy
1999; Gatlin et al., 2007; Zhang et al., 2014).
The main drawbacks of using plant-derived proteins in

fish feed are related to the low level of indispensable
amino acids (in particular, methionine and lysine) and to
the presence of a wide variety of anti-nutritional factors,
such as saponins, lectins, phytate, trypsin inhibitors,
phenols, and tannins (Francis et al. 2001), which could
damage the intestinal tract thus reducing nutrient ab-
sorption and fish growth (Van den Ingh et al. 1991;
Knudsen et al. 2008; Urán et al. 2008a, b).
Indeed, studies on Atlantic salmon (Salmo salar), rain-

bow trout (Oncorhychus mykiss), common carp (Cypri-
nus carpio), and gilthead sea bream (Sparus aurata)
have indicated that the inclusion of less-refined plant
products such as soybean meal (SBM) in the diet trig-
gers an inflammation process in the distal intestine,
referred to as SBM-induced enteropathy (Baeverfjord
and Krogdahl 1996; Olli and Krogdahl 1994; Van den
Ingh et al. 1991; Knudsen et al. 2008; Urán, et al. 2008a,
b; Venou et al. 2006). Although the provoking mechan-
ism remains to be established, the SBM-induced enteritis
is believed to be caused by a disruption of the intestinal
barrier, with subsequent exposure of otherwise shielded
layers of the mucosa to luminal ingredients, including
food-derived and microbial antigens (Romarheim et al.
2011). The typical signs of such inflammation are a
shortening of the primary and secondary intestinal mu-
cosal folds, an increase in the number of Goblet cells,
and the infiltration of inflammatory cells, particularly
macrophages and eosinophilic granulocytes into the lam-
ina propria. This situation reduces the capacity of the
enterocytes lining the epithelium to absorb nutrients
(Baeverfjord and Krogdahl 1996; Van den Ingh et al.
1991; Buttle et al., 2001). These effects proved to be
dose-dependent in Atlantic salmon; the worst symptoms
were observed at the highest inclusion level (30%), but
even diets containing as low as 7.6% SBM produced
morphological changes at the intestinal level (Krogdahl
et al. 2003).
It has been well documented that the responsible for

the off-target effects of SBM is not the soy protein but
other components present in the SBM, such as the anti-
nutritional factor saponin, in combination with at least
one or more unidentified components (Van den Ingh
et al. 1991; Baeverfjord and Krogdahl 1996; Bakke-
Mckellep et al. 2000; Krogdahl et al. 2003; Knudsen
et al. 2008).
Once an inflammatory immune response is initiated,

proinflammatory cytokines and a panel of chemokines
(secreted proteins that play a major role in the inflam-
matory response) instigate the coordinated expression of
downstream genes (Martin et al. 2006; Kortner et al.
2012; Grammes et al. 2013; Sahlmann et al. 2013;
Marjara et al. 2012; Krogdahl et al. 2015; De Santis et al.
2015). The expression of pro- and anti-inflammatory
cytokine genes was quantified by Urán et al. (2008a) in
the isolated intraepithelial lymphocytes of common carp
(Cyprinus carpio L.), in which an intestinal inflammation
was observed. The enteropathy was developed when
carp continuously fed on animal protein were trans-
ferred to a diet in which 20% of the protein was replaced
by SBM. After 3 weeks of feeding, the pro-inflammatory
interleukin 1β (IL-1β) and tumor necrosis factor α1
(TNF-α1) genes were upregulated whereas the anti-
inflammatory interleukin 10 (IL-10) was downregulated
after an initial upregulation at the first week of feeding.
The effects of replacement of FM with VM, often

accompanied by reduced fish performance, are not
restricted to SBM inclusion solely but have been ob-
served after inclusion of many plant protein sources in
several teleost species such as gilthead sea bream, turbot,
Atlantic cod, and parrot fish (Gomez-Requeni et al.
2004; Sitja-Bobadilla et al. 2005; Yun et al. 2011; Hansen
et al. 2007; Lim and Lee 2009). Baeza-Ariño et al. (2014)
described liver and gut alterations of gilthead sea bream,
S. aurata L., fed on diets in which FM was replaced by a
mixture of rice and pea protein concentrates. The results
of the histological analysis showed significant changes in
the case of the 90% substitution in parameters such as
thickness of the gut layers, number of Goblet cells, and
villi’s length and thickness, whereas the integrity of the
gut structure was not significantly affected by a diet with
up to 60% of replacement. In some cases, severe vacuoli-
zation was encountered, which consequently deformed
enterocytes and displaced the nucleus.
The short chain fatty acid of butyrate may promote

the healing of inflamed intestine through its major role
in enhancing epithelial cell proliferation and differenti-
ation and in improving the intestinal absorptive function
(Canani et al. 2012; Gálfi and Neogrády 2002; Wong
et al. 2006). Like other short chain or volatile fatty acids
(acetic, propionic, valeric, and caproic), butyric acid is
produced during the fermentation of dietary fibers by
the anaerobic microbiota associated with the epithelium
of the animals’ digestive tract. In addition to being the
main respiratory fuel source of the intestinal bacteria,
and preferred to glucose or glutamine, this four-carbon
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chain organic acid molecule has potential immunomod-
ulatory and anti-inflammatory properties (Vinolo et al.
2009; Toden et al. 2007; Terova et al. 2016), and exert
multiple other beneficial effects on host energy metabol-
ism (Hamer et al. 2007; Den Besten et al. 2013; Liu et al.
2014; da Silva et al. 2016). Although the mechanisms
underlying these effects are still enigmatic and subject of
intense scrutiny, it is believed that they encompass the
complex interplay between diet, gut microbiota, and
host energy metabolism.
However, much of the research on butyrate has been

focused on terrestrial vertebrates, including humans,
while very few studies have been conducted in fish. In
particular, little is known about the effects of butyrate
used as a feed additive on fish intestinal integrity. In ter-
restrial farmed animals such as pig and chicken, butyrate
included in the diet has had a positive influence on body
weight gain, feed utilization, and composition of intes-
tinal microflora. It exerted trophic effects on the intes-
tinal epithelium through an increase in the villi length
and crypt depth, too (Gálfi and Bokori 1990; Kotunia
et al. 2004; Hu and Guo 2007). In fish, Robles et al.
(2013) reported an effect of butyrate used as a feed addi-
tive in increasing the availability of several essential
amino acids and nucleotide derivatives, which have been
demonstrated to increase fish growth when they are
added individually to the diet.
Another feed additive that has been shown to have a

restorative effect on soya saponin- and soya lectin-
induced enteritis in fish (Iwashita et al. 2008, 2009) is
the organic acid taurine. A number of recent studies
reviewed by El-Sayed (2014) and Salze and Davis (2015)
have demonstrated the essentiality of dietary taurine for
many commercially relevant cultured species, including
marine teleosts. According to these studies, taurine is in-
volved in many physiological functions in fish and repre-
sents an essential nutrient, which exerts powerful
antioxidant and anti-inflammatory properties, and is re-
quired as a supplement in the feed when a relevant per-
centage of vegetable protein sources are utilized. Taurine
is a neutral β-amino acid found in high concentrations
in animal tissues, whereas plants contain less than 1% of
the taurine levels found in animals. In mammals, taurine
is mainly synthesized in liver and brain through enzym-
atic oxidation and direct conversion of cysteine (derived
from methionine) to cysteine sulfinic acid and hypotaur-
ine. In this pathway, the enzymes cysteine dioxygenase
(CDO) and cysteinsulfinate decarboxylase (CDS) have
important roles (Griffith 1987; El-Sayed 2014). There-
fore, in animal taxa with limited or no activity of the
CDS, such as marine fish species, a continuous supply of
taurine should be provided with the diet (El-Sayed 2014;
Johnson et al. 2015; López et al. 2015). Indeed,
Yokoyama et al. (2001), by comparing the CSD activity
and hypotaurine production in several teleost and mam-
malian species, found that the only fish species with a
high CSD activity were rainbow trout and tilapia. How-
ever, even in these species, the enzyme activity was an
order of magnitude lower than that found in mammalian
species. Other data (Salze and Davis 2015) indicate that
both species benefit from dietary taurine supplementa-
tion thus suggesting that levels of CSD activity are insuf-
ficient to provide the necessary amounts of taurine for
maximum growth of these species.
Accordingly, the objective of the present research was

to evaluate the mitigating effects of butyrate and taurine
used as feed additives on the morphological abnormal-
ities caused by a SBM-based diet in the intestine of
European sea bass (Dicentrarchus labrax). In order to
attain this aim, we utilized both light and transmission
electron microscopy (TEM) to determine intestinal
changes in fish. We also quantified the intestinal mes-
senger RNA (mRNA) abundance of several genes in-
volved in the mucosal inflammatory response such as
TNFα, which is a cell-signaling protein (cytokine) that
makes up the inflammatory acute-phase reaction, and
interleukins such as IL-8, IL-1β, IL-10, and IL-6, which
are well-known cytokines that regulate immune
responses, inflammatory reactions, and hematopoiesis.

Methods
Feeding trial
The feeding experiment was conducted at the water re-
circulating system facility of the Department of Biotech-
nology and Life Sciences, University of Insubria, Varese,
Italy. After being individually weighted and tagged, 30
European sea bass (D. labrax) of an average weight of
514 ± 67.4 g were transferred into six circular 750-L
tanks with 5 fish/tank for 1-week acclimation before the
start of the feeding trial. During the feeding trial, fish
were fed two times a day at apparent satiety with three
different diets (Table 1) used in duplicate (two tanks per
diet).
Fish were sampled at the end of the feeding experi-

ment, which lasted 60 days. The experimental tanks
were connected to a 20-m3 water recirculation system.
The water parameters such as pH, temperature, and
dissolved oxygen (DO) were strictly controlled during
all the experiment. Temperature was maintained at
20 ± 0.5 °C; salinity at 22 g L−1; pH 7.2; total N–
NH3 ≤ 0.1 mg L−1; N–NO2

− ≤ 0.02 mg L−1; N–NO3
− ≤

5 mg L−1, DO 8–8.5 mg L−1, and DO saturation, over 97%.
Fish were euthanized by an overdose (320 mg/L at

22 °C) of anesthetic (tricaine-methasulfonate MS-222,
Sigma-Aldrich, Italy) and then weighed individually.
The specific growth rate (SGR), the feed conversion
ratio (FCR), and the condition factor (K) were calcu-
lated using the following formula:



Table 1 Formulation (%), and proximate composition of
experimental diets

Diet

C B T

Ingredient (%)

Full-fat soy 12.8 12.8 12.8

SPC 13.6 13.6 13.6

Wheat 8.0 8.0 8.0

Wheat gluten meal 8.19 8.19 8.19

DCP 1.72 1.72 1.72

Mixed oila 12 10 12

Lysine (98%) 0.29 0.29 0.29

Vitamins and mineral premixb 0.4 0.4 0.4

Corn gluten 16.0 16.0 16.0

Soybean meal (48%) 16.7 16.7 16.7

Fish meal (65%) 10.0 10.0 10.0

Anti molds 0.1 0.1 0.1

Taurine – – 0.2

Sodium butyrate – 0.2 –

Filler 0.2 – –

Proximate composition (%)

Crude protein 45.0 45.0 45.0

Fat 16.0 16.0 16.0

Fiber 2.3 2.3 2.3

Ash 6.4 6.4 6.4

Total calcium 1.0 1.0 1.0

Total phosphorus 0.95 0.95 0.95

Methionine 0.9 0.9 0.9

Methionine + cysteine 1.6 1.6 1.6

Lysine 2.3 2.3 2.3

SPC soy protein concentrate, DCP dicalcium phosphate
aMixed oil: 40% corn 60% soy
bVitamin and mineral premix (quantities in 1 kg of mix): vitamin A,
4,000,000 IU; vitamin D3, 800,000 IU; vitamin C, 25,000 mg; vitamin E,
15,000 mg; inositol, 15,000 mg; niacin, 12,000 mg; choline chloride, 6000 mg;
calcium pantothenate, 3000 mg; vitamin B1, 2000 mg; vitamin B3, 2000 mg;
vitamin B6, 1800 mg; biotin, 100 mg; manganese, 9000 mg; zinc, 8000 mg;
iron, 7000 mg; copper, 1400 mg; cobalt, 160 mg; iodine 120 mg; anticaking
and antioxidant + carrier, making up to 1000 g
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SGR %=dayð Þ
¼ 100 � ln final body weightð Þ – ln initial body weightð Þ½ �

days
;

FCR ¼ dry feed intake
wet weight gain

;

K ¼ 100
wet weight gð Þ

total length cmð Þ3
" #

:

The distal intestine of all sampled fish (six fish/diet,
three from each tank) was dissected out. A small part of
it was fixed in 4% buffered formalin, pH 7.2, for histo-
logical, immunohistochemical or electron microscopy
examination, whereas the remaining part was conserved
at –80 °C for gene expression analyses.

The experimental feed
We used three experimental diets (C, B, and T), which
contained the same low percentage of fishmeal and high
percentage of soybean meal, as shown in Table 1. Diets
B and T were supplemented with 0.2% of sodium butyr-
ate or taurine, respectively, whereas Diet C, which repre-
sented the control diet, was not supplemented.

Light microscopy
Sampled intestines were fixed by immersion in 4% buff-
ered formal, dehydrated with a graded ethanol series (20,
30, 50, 70, and 95%), embedded in paraffin, and sec-
tioned at 4 μm. After dewaxing and rehydrating the sec-
tions, they were consecutively stained with hematoxylin-
eosin. Periodic Acidic Schiff (PAS) and Alcian blue stain
at pH 2.5 were used to reveal neutral and acidic muco-
substances, respectively.
The thickness of intestinal wall was measured by ana-

lysing six intestines/diet and using the average value ob-
tained from 3 tissue sections/intestine (n = 6). The
length of muscle layer and mucosa was measured (in mi-
crometers) by using the Image J software package and
then the percentages were calculated by referring to the
thickness of the whole intestine wall. Statistical differ-
ences were calculated by ANOVA followed by Duncan’s
post hoc test, and P < 0.05 was considered as level of sig-
nificance. Statistical analysis was performed using Statis-
tica 7.0 software (StatSoft Inc., Tulsa, OK, USA).

Immunohistochemistry for leukocyte assessment
Paraffin sections of distal intestine were dewaxed and
rehydrated with a standard step of decreasing ethanol
series. After washing with PBS, sections were pre-
incubated for 30 min in blocking solution (2% bovine
serum albumin, BSA, 0.1% Tween in PBS) and then in-
cubated overnight at 4 °C with the polyclonal antibody
rabbit anti-human CD45 (GenScript NJ, USA) diluted
1:100 in blocking solution. The washed specimens were
incubated for 1 h at room temperature with the second-
ary antibody goat anti-rabbit (dilution 1:100 in PBS/
BSA) conjugated with alkaline phosphatase (Jackson,
Immuno Research Laboratories, West Grove, PA, USA).
Secondary antibody alkaline phosphatase conjugated was
visualized using 5-Bromo-4-Chloro-3-Indolyl Phosphate/
Nitro Blue Tetrazolium tablets (BCIP/NBT, Sigma).
Mounted slides were examined under an optical micro-
scope (Nikon Eclipse Ni, Nikon, Tokyo, Japan). Images
were acquired with a DS-5 M-L1 digital camera system
(Nikon). Control sections were incubated in PBS/BSA



Table 2 Sequences and melting temperatures (Tm) of the
primers used for in vitro synthesis of standard mRNAs

Gene GenBank acc. nr. Nucleotide sequence (5′–3′) Tm (°C)

IL-1β AJ269472 F: gtaatacgactcactatagggTGC
CATGGAGAGACTGAAGG

>70

R: ACTGGGTGTACGGTCCAAGT 60.7

IL-6 AM490062 F: gtaatacgactcactatagggACTT
CCAAAACATGCCCTGA

>70

R: CCGCTGGTCAGTCTAAGGAG 59.5

IL-8 AM490063 F: gtaatacgactcactatagggTCAGT
GAAGGGATGAGTCTGA

>70

R: CTCGGGGTCCAGGCAAAC 60.3

IL-10 AM268529 F: gtaatacgactcactatagggCAGT
GCTGTCGTTTTGTGGA

>70

R: TCACTCTTGAGCTGGTCGAAG 59.7

TNFα DQ070246 F: gtaatacgactcactatagggCACTA
CACACTGAAGCGCAT

>70

R: CTGTAGCTGTCCTCCTGAGC 59.5
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without the primary antibody. To avoid false positives
due to the chromogen reaction with endogenous alkaline
phosphatase, sections were treated with CH3COOH 20%
applied for 15 min at 4 °C.

Electron microscopy
Specimens already fixed in formalin were transferred to
a 2% Karnovsky solution at 4 °C for 2 h, post-fixed in os-
mium tetroxide for 1 h, and then embedded in Epoxy
resins. Ultra-thin sections were stained with uranyl acet-
ate and lead citrate and examined with a TEM Morgagni
Philips/FEI electron microscope.

One-Step Taqman® real-time RT-PCR quantification of
target genes’ mRNA copies
Preparation of total RNA and first-strand (cDNA) synthesis
Total RNA was extracted from 125 mg of sea bass distal
intestine (6 fish/diet). Tissue lysis and homogenization
were performed in special disposable sterile tubes
(GentleMACS M tubes™, MiltenyiBiotec), in order to
minimize the possibility of cross-contamination between
samples, and using the gentleMACSDissociator (Milte-
nyiBiotec). After an automated purification process by
using the Maxwell® 16 Instrument and Maxwell® 16
Tissue LEV total RNA purification Kit (Promega, Milan,
Italy), the RNA was isolated. This RNA purification pro-
cedure provides an easy method for efficient, automated
purification of highly concentrated total RNA from up
to 25 mg of tissue. Purified RNA for up to 16 samples is
obtained in less than 45 min of hands-free instrument
operation. No post-purification treatment with nuclease,
cleanup, or concentration is required to achieve superior
performance in downstream applications. The low elu-
tion volume (30–100 μL) is used to generate purified
RNA in a more concentrated format for use in down-
stream applications such as qRT-PCR, RT-PCR, and
complementary DNA (cDNA) synthesis.
The integrity and purity of total RNA were determined

by a spectrophotometer NanoDrop ™ (Thermo Scien-
tific), measuring the absorbance at 260 nm and the
absorbance ratio 260/280, respectively. The integrity of
RNA was verified by electrophoresis on 1% agarose gel
stained with ethidium bromide.
Reverse transcription of 1 μg total RNA from each fish

intestine tissue was performed with random decamers in
a volume of 20 μL by using the High-Capacity cDNA
Archive Kit (ThermoFisher Scientific, Milan, Italy)
following the manufacturer’s instructions.

Generation of in vitro-transcribed mRNAs for target genes
The number of transcript copies of target genes IL-1β
(GenBank acc. nr. AJ269472), IL-6 (GenBank AM490062),
IL-8 (AM490063), IL-10 (AM268529), and TNFα
(DQ070246) was quantified by One-Step Taqman® real-
time RT-PCR technique using the standard curve method.
Standard curves were constructed using the known copy
number of synthetic mRNAs of each gene. To obtain syn-
thetic mRNAs, a forward and a reverse primer were
designed based on the mRNA sequence of each gene and
used to create templates for the in vitro transcription of
mRNAs (Table 2).
The forward primer was engineered to contain a T3

phage polymerase promoter gene sequence to its 5′ end
and used together with the reverse primer in a conven-
tional RT-PCR of total RNA extracted from the sea bass
intestine.
PCR products were then evaluated on a 2.5% agarose

gel, cloned using pGEM®-T Easy cloning vector system
(Promega, Milan, Italy), and subsequently sequenced. In
vitro transcriptions were performed using T3 RNA poly-
merase and other reagents supplied in the Promega
RiboProbe In Vitro Transcription System kit according
to the manufacturer’s protocol.

Generation of standard curves
The mRNAs produced by in vitro transcription were
used as quantitative standards in analyzing experimental
(biological) samples (Terova et al. 2009). Defined
amounts of mRNAs at tenfold dilutions were subjected
to real-time PCR using One-Step Taqman® EZ RT-PCR
Core Reagents (ThermoFisher Scientific, Milan, Italy),
including 1× Taqman® buffer, 3 mM Mn(OAc)2, 0.3 mM
dNTP except dTTP, 0.6 mM dUTP, 0.3 μM forward
primer, 0.3 μM reverse primer, 0.2 μM FAM-6 (6-carbo-
xyfluorescein-labeled probe), 5 units rTH DNA polymer-
ase, and 0.5 units AmpErase® UNG enzyme in a 25-
μL reaction volume. RT-PCR conditions were 2 min
at 50 °C, 30 min at 60 °C, and 5 min at 95 °C,
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followed by 40 cycles consisting of 20 s at 94 °C, and
1 min at 62 °C. The Ct values obtained by amplifica-
tion were used to create standard curves for target
genes.
Quantification of IL-1β, IL-6 IL-8, IL-10, and TNFα in
biological samples
One hundred nanograms of total RNA extracted from
the experimental intestines was subjected to One-step
Taqman® quantitative real-time RT-PCR, in parallel to
tenfold-diluted defined amounts of standard mRNA,
under the same experimental conditions as used to
establish the standard curves. Real-time Assays-by-
Design SM PCR primers and gene-specific fluorogenic
probes were designed by Life Technologies. Primer
sequences and TaqMan® probe used for each target gene
amplification are shown in Table 3. TaqMan® PCR reac-
tions were performed on a StepOne Real-Time PCR
System (Life Technologies). To reduce pipetting errors,
master mixes were prepared to set up duplicate reac-
tions (2 × 30 μL) for each sample.
Sample quantification
Data from the TaqMan® PCR runs were collected
with StepOne™ Software v 2.0. Cycle threshold (Ct)
values corresponded to the number of cycles at
which the fluorescence emission monitored in real
time exceeded the threshold limit. The Ct values
were used to create standard curves to serve as a
basis for calculating the absolute amounts of mRNA
in total RNA.
Table 3 Primers and probes used for one-step quantitative
real-time RT-PCR

Gene Nucleotide sequence (5′–3′)

IL-1β F: TTGTGTTTGAGCGCGGAACA

R: TGTCGGTCACGCTGCATTG

Probe: 6-Fam-CTCCAACAGCGCAGTACAGCAAGC-BHQ1

IL-6 F: GCCTGCTCACTTACACAGCTCTTC

R: TCTTGAAACTGTGGCCCTCTGA

Probe: 6-Fam-AGAAGGAGTCCCCCAGCTCGATCCG-BHQ1

IL-8 F: CTGTCGCTGCATCCAAACAGA

R: GCAATGGGAGTTAGCAGGAATCAG

Probe: 6-Fam-AGCAAACCCATCGGCCGCCAC-BHQ1

IL-10 F: AGCGCTGCTAGACCAGACTGT

R: CGGCAGAACCGTGCTTAGAT

Probe: 6-Fam-AGACACTTTAAAGACCCCGTTCGCTTGC-BHQ1

TNFα F: AAACCGGCCTCTACTTCGTCTA

R: TCCCGCACTTTCCTCTTCAC

Probe: 6-Fam-AGCCAGGCGTCGTTCAGAGTCTCC-BHQ1
Statistical analyses
All statistical analysis were performed by using the soft-
ware IBM SPSS Statistics 21. Growth performance data
were submitted to two-way analysis of variance (two-way
ANOVA) considering both tank and diet effects. One-way
ANOVA was applied to analyze the morphology and gene
expression data. In all statistical analyses, each individual
fish was considered as an experimental unit. Duncan’s test
was used for post hoc analysis. Differences were consid-
ered to be statistically significant when P < 0.05.
Results
Fish growth
As reported in Table 4, statistical analysis by two-way
ANOVA showed significant differences in fish growth per-
formance parameters (SGR, and FCR) related to diet,
whereas no tank effect was observed. Growth perfor-
mances of fish fed for 60 days with diet T were signifi-
cantly higher (P < 0.05) than in fish fed with diets C and B,
whereas there were no significant differences between fish
fed diet C and diet B. The condition factor (K) of fish fed
with diet T was significantly higher (P < 0.05) than in fish
fed with diet B, whereas there were no significant differ-
ences between fish fed diets C and T and diets C and B.
Light microscopy and immunohistochemistry
By light microscopy, we evaluated different aspects of the
various anatomical portions of the distal intestine: the
thickness of muscle and mucosal layers and the shape and
length of the villi of the intestinal mucosa. In addition, we
paid attention to the presence and distribution of Goblet
Table 4 Growth performance indexes of European sea bass fed
three different diets during the feeding trial

Diet C Diet B Diet T

Biomass (g) ± SD

Initial 508.20 ± 60.02 502.60 ± 73.82 528.00 ± 67.76

Final 546.80 ± 61.14 535.20 ± 62.51 641.20 ± 60.95

SGR (%/day) 0.12 ± 0.08a 0.11 ± 0.05a 0.32 ± 0.12b

FCR 2.92 ± 1.54a 2.81 ± .0.51a 1.30 ± 0.25b

K 1.11 ± 0.11ab 1.07 ± 0.03b 1.23 ± 0.08a

Fish were fed for 60 days with three experimental diets (C, B, and T), which
contained the same low percentage of fishmeal and high percentage of soybean
meal. Diets B and T were supplemented with 0.2% of sodium butyrate or taurine,
respectively, whereas Diet C (control), was not supplemented. Values are mean ±
SD (n = 10). Statistical differences were calculated by two-way ANOVA followed
by Duncan's post hoc test. The values in each row with different superscript
letters are significantly different (P < 0.05)

SGR %=dayð Þ ¼ 100 � ln final body weightð Þ – ln initial body weightð Þ½ �
days

FCR ¼ dry feed intake
wet weight gain

K ¼ 100
wet weight gð Þ

total length cmð Þ3
" #
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cells and to the presence, size, and content of supra-
nuclear vacuoles of enterocytes. The presence and extent
of any inflammatory infiltrates were also examined.
In the distal intestines of sea bass fed with diet C, the

thickness of the intestinal wall was formed by 48% of
muscle and 52% of villi (Fig. 1a). In enterocytes, we ob-
served abundant vacuoles of various sizes not regularly
aligned, eosinophils and PAS-positive, occupying much
of the cytoplasm and forcing the nucleus at the base of
the cell (Fig. 1b, c). We observed a few Alcian blue posi-
tive Goblet cells that were uniformly distributed (Fig. 1c).
An important leukocyte infiltrate CD45+ was found in
the lamina propria, at the level of the submucosa and
also at the level of the muscle layers (Fig. 1d).
In the intestines of sea bass receiving the diet B in

which 0.2% of butyrate was added, the thickness of mus-
cular layer in the intestinal wall was significantly reduced
in comparison to fish fed on diet C, whereas the villi
layer was elongated and irregularly shaped (Fig. 2a, b;
Fig. 3). The intestinal villi were long and branched
(Fig. 2a, b). Supranuclear vacuoles diverse in form, size,
and content were observed (Fig. 2b). The enterocytes
vacuoles were PAS-negative while numerous Goblet cells
were found well distributed along the villi, as demon-
strated specifically by Alcian blue staining (Fig. 2c). In
several areas, the typical single layer showed an abnor-
mal pseudostratification (Fig. 2c). An inflammatory infil-
trate CD45+ was identified by immunohistochemistry in
the lamina propria and in the submucosa (Fig. 2d).
In the sea bass fed with diet T which was supple-

mented with 0.2% of taurine, the muscle layer and
Fig. 1 Light microscope images obtained from the distal intestine of sea b
at low magnification, hematoxylin-eosin staining. b In the epithelial skinfold
(white arrowheads). c Alcian blue-PAS staining showing the presence of nu
few Alcian blue positive Goblet cells (black arrowheads). d Immunohistoche
lamina propria, submucosa, and muscle layers (black arrows). Bar in a 1 mm
intestinal mucosa had a 1:1 ratio (Figs. 3 and 4a). Supra-
nuclear vacuoles, characterized by a heterogeneous con-
tent, were evident (Fig. 4b). Alcian blue positive Goblet
cells were abundant, preferentially concentrated in the
medium-apical villi, while vacuoles were faintly PAS+
(Fig. 4c). The CD45+ cell infiltrate was detected both in
the lamina propria and in the submucosa, as confirmed
by immunohistochemistry (Fig. 4d).
Electron microscopy
Further investigation by using transmission electron
microscopy allowed us to highlight the cell differences
between the three types of samples. Different aspects of
the enterocytes were investigated. From the lumen to
the lamina propria of the fold, we considered the brush
border, the tubulo-vesicular system occupying the apical
area of enterocytes, the supranuclear vacuoles, the
nuclei, and infiltrating inflammatory cells.
The distal intestines of sea bass receiving diet C

showed brush border areas with microvilli that appeared
irregular and damaged (Fig. 5a). The supranuclear cyto-
plasm was occupied by numerous vacuoles of different
dimensions, with an electrondense content from
homogenous to granular (Fig. 5a, b). Some vacuoles
showed an irregular contour, suggesting a rupture of
their membrane (Fig. 5a). Images of fusion between
vacuoles were observed (Fig. 5b). Some nuclei of
enterocytes appeared pyknotic (Fig. 5c). An infiltrate
of leukocytes was shown between epithelial cells
(Fig. 5a, c).
ass fed with diet C. a Morphology of a complete section of intestine
, at higher magnification, numerous eosinophils vacuoles are visible
merous PAS-positive enterocytes vacuoles (white arrowheads) and a
mical analysis showing numerous infiltrating CD45+ leukocytes in the
; bar in b 50 μm; bars in c, d 100 μm



Fig. 2 Light microscope images obtained from the distal intestine of sea bass fed with diet B. a Morphology of a section of intestine, EE staining.
b Higher magnification of intestinal villi showing their irregular structure and enterocytes supernuclear vacuoles (white arrowheads). c Alcian
blue-PAS staining highlighting intraepithelial Goblet cells (black arrowheads). d Anti-CD45 immunohistochemistry showing numerous
positive cells infiltrating in the submucosa and in the lamina propria (black arrows). Bar in a 1 mm; bar in b 50 μm; bars in c, d 100 μm
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In the intestines of fish fed with diet B, the microvilli
were well developed (Fig. 6a, c), even if sometimes inter-
rupted for alteration of the apical plasma membrane
(Fig. 6a). In the apical cytoplasm, an expanded tubulo-
vesicular system was observed (Fig. 6c). In the supra-
nuclear cytoplasm, many characteristic vacuoles that
had an irregular shape and heterogeneous content,
with clear areas mixed with dense material, were evi-
dent (Fig. 6b, c). Between enterocytes some Goblet
cells were present (Fig. 6a).
Sections of distal intestines from fish fed with diet T

presented microvilli, which were long and well-shaped,
sometimes topped by a layer of mucus and a tubulo-
vesicular system in the apical cytoplasm (Fig. 7a, c). In
the supranuclear cytoplasm, there were many vacuoles
with a heterogeneous content showing some lamellar
Fig. 3 Histogram showing thickness (in percentage) of different parts of in
wall was measured by analysing the average value obtained from 3 tissue
(n = 6). Statistical differences were calculated by ANOVA followed by Dunca
differences (P < 0.05)
profiles (Fig. 7b). Some Goblet cells were observed
between enterocytes (Fig. 7a).

Gene expression analysis
The expression levels of the proinflammatory interleu-
kins (IL-1β, IL-6, IL-8), TNFα and the anti-inflammatory
interleukin IL-10 genes were evaluated in the distal por-
tion of sea bass intestine by One-Step Taqman® real-
time RT-PCR. The results of this analysis (Table 5)
showed that the expression of target genes in the intes-
tine was deeply influenced by the type of fish diet.
Although IL-1β was expressed at relatively low

levels in all analyzed fish, sea bass fed with diet T
(supplemented with taurine), displayed the lowest
number of mRNA copies of IL-1β gene in compari-
son to fish fed with the other two diets. Also, the
testinal wall in fish fed on different diets. The thickness of intestinal
sections from each intestine (6 intestines/diet). Values are mean ± SD
n’s post-hoc test. Different letters indicate statistically significant



Fig. 4 Light microscope images obtained from the distal intestine of sea bass fed with diet T. a Morphology of the intestine observed at low
magnification, EE staining. b At higher magnification, enterocytes vacuoles are visible (white arrowheads). c Alcian blue-PAS staining highlights abundant
Alcian blue positive Goblet cells (black arrowheads) and some faintly PAS+-vacuoles (white arrowheads). d Immunohistochemistry showing a large
number of lamina propria and submucosa infiltrating cells, CD45-positive (black arrows). Bar in a 1 mm; bar in b 50 μm; bars in c, d 100 μm
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expression of IL-8 and IL-10 genes in fish fed diet T
was significantly lower (P < 0.05) with respect to the fish
that received control or butyrate-supplemented diets.
Dietary butyrate caused an upregulation of TNFα gene
transcription (Table 5); indeed, fish fed on diet B showed
higher levels of TNFα mRNA copies than fish fed with the
other diets (P < 0.05). Finally, among the interleukins
quantified in this study, IL-6 was the only one, to be not
influenced by the diet (Table 5).
Fig. 5 Electron microscope images obtained from the distal intestine of se
advanced degeneration and enterocytes with focal alterations of the micro
content from homogenous to granular (black arrows), some of which are p
(white arrow). b At higher magnification, a small vacuole (white asterisk) po
enterocytes (white arrows) and leukocyte infiltration between enterocytes (
b 200 nm
Discussion
The feeding experiment conducted in this study lasted
60 days which is a short period for SGR and FCR reli-
able evaluation. Nevertheless, SGR of fish fed with diet
T was 2.7 times higher (P < 0.05) than in fish fed with
diet C or B. This result is also in line with findings of
Brotons Martinez et al. (2004) on sea bass fingerlings
fed on a diet containing SBM and supplemented with
taurine for 30 days. The dramatic differences in growth
a bass fed with diet C. a A portion of the epithelium, with an
villi (circle), numerous supranuclear vacuoles with an electrondense
artially broken (black asterisk), and incipient leukocyte infiltration
uring its contents into a larger one is visible. c Pyknotic nuclei of
white arrowhead). v vacuoles, m microvilli. Bars in a, c 5 μm; bar in



Fig. 6 Electron microscope images obtained from the distal intestine of sea bass fed with diet B. a In the apex portion, well developed,
partly damaged microvilli are present (white arrowhead); in the median portion of the enterocytes, there are large heterogeneous vacuoles.
The cytoplasm of a Goblet cell is also visible. b Vacuoles at higher magnification showing a heterogeneous content (white arrows). c Apical
portion of a cytoplasm in which there are long microvilli and a well-developed tubulo-vesicular system (white arrowhead). Vacuoles with
heterogeneous content are also visible. v vacuoles, m microvilli, Gc Goblet cell. Bar in a 5 μm; bars in b, c 200 nm
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observed in our study between the taurine-
supplemented group (T) and the experimental groups B
and C may be due to taurine deficiency in the latter
groups, thus indicating that taurine is an essential diet-
ary nutrient, as reported in several studies reviewed by
Salze and Davis (2015).
Histological samples from distal intestine of fish fed

with diet B (supplemented with sodium butyrate)
showed that the muscle layers were thinner than in fish
fed with diets C or T. This suggests that butyrate facili-
tated the formation of softer fecal pellets in fish of this
Fig. 7 Electron microscope images obtained from the distal intestine of se
apical tubulo-vesicular system (white arrowhead), and some vacuoles. Between
lamellar body (white arrowhead) is visible. c Epithelium with well-developed mic
arrowhead), and supranuclear vacuoles. v vacuoles, m microvilli, Gc Goblet cell. B
group. Furthermore, the complex structure of the intes-
tinal villi included a high number of Goblet cells, and it
was not pseudostratified which means that it was iper-
proliferative. This result is in line with previous studies
(Gálfi and Bokori 1990; Kotunia et al. 2004; Hu and Guo
2007), which have demonstrated the trophic effects of
butyrate on the intestinal epithelium of terrestrial ani-
mals through an increase in the villi length and crypt
depth. The number of supranuclear vacuoles was less
than in fish fed with diet C, and they were often hetero-
geneous. We observed a few intestinal Goblet cells, in
a bass fed with diet T. a The enterocytes show long microvilli, an
enterocytes, a Goblet cell is observed. b An enterocyte vacuole containing
rovilli covered by mucus (black arrow), a tubulo-vesicular system (white
ar in a 10 μm; bars in b, c 200 nm



Table 5 Expression levels of pro and inflammatory interleukins
genes (IL-1β, IL-6, IL-8, IL-10) and TNFα gene in the distal intestine
of European sea bass fed different diets

Diet C Diet B Diet T

Gene Gene expression levels (transcript copies/ng total RNA)

IL-1β 323.19 ± 33.55a 321.30 ± 15.96a 215.09 ± 41.94b

IL-6 647.14 ± 325.05 873.26 ± 176.68 603.50 ± 163.84

IL-8 548.88 ± 196.73a 763.04 ± 190.70a 285.90 ± 63.58b

IL-10 257.18 ± 66.55a 326.67 ± 64.73a 110.80 ± 67.70b

TNFα 370.07 ± 104.81b 664.20 ± 109.52a 377.25 ± 118.41b

The number of transcript copies of target genes was quantified by One-Step
Taqman® real-time RT-PCR technique using the standard curve method. Values
are mean ± SD (n = 6). The values in each row with different superscript letters
are significantly different (P < 0.05)
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fish fed with diet C with SBM, and this result is in agree-
ment with other studies conducted in Atlantic salmon
(S. salar) and rainbow trout (O. mykiss) (Baeverfjord and
Krogdahl 1996; Iwashita et al. 2008). However, we found
also high concentrations of absorptive vacuoles contain-
ing PAS-positive substances (probably glicoproteins,
considering their acidophilic properties) in the supra-
nuclear region of the enterocytes from fish fed with diet
C. This could indicate an interruption of the digestive
processes occurring within the enterocytes, since these
cells are involved not only in the uptake of different
nutrients but also in the digestion. For example, once
inside the enterocyte, the absorbed di- and tripeptides
are digested into amino acids by cytoplasmic peptidases
and transported from the cell into blood; only a very
small number of these small peptides enter blood intact.
In contrast, other authors have reported a reduction of
the same supranuclear vesicles in salmonids and in
carps. In fish fed with diet C, lamina propria, muscle
layer, and epithelial lining were heavily infiltrated with
inflammatory cells, including macrophages and poly-
morphonuclear leukocytes. The important signs of
inflammation in our samples were also confirmed by im-
munohistochemistry staining. This analysis showed a
strong positivity for anti-CD45 antibody indicating a
relevant diffusion of leukocytes in all the distal intestinal
tissue. The fact that an antibody directed against the
human protein reacted also with sea bass tissue might
confirm a high structural conservation of this protein in
fish as well. This hypothesis is also supported by the
discovery of a CD45 homolog (Marozzi et al. 2012) in
sea bass (D. labrax), whose sequence obtained from
transcriptome of gills (kindly provided by Francesco
Buonocore, University of Tuscia, Italy) shows 52% of
identity with human CD45 isoform 1 precursor. Since a
common rule of thumb is that two sequences are hom-
ologous if they share more than 30% of identity over
their entire length (Pearson, 2013), we are confident that
52% is a high enough identity to support the similarity
between human and sea bass CD45 sequences. Of note,
a 30% identity threshold for homology underestimates
the number of homologs detected by sequence similarity
between humans and yeast by 33% (Pearson 2013).
The TEM observations showed partly damaged micro-

villi and numerous large vacuoles occupying the supra-
nuclear cytoplasm and containing a homogeneous
electrondense substance, with partial break of their
membranes probably leading to the release of lytic
enzymes and recall of leukocytes. Some enterocytes with
pyknotic nuclei were also observed. According to
Noaillac-Depeyre and Gas (1973), the supranuclear body
is of complex origin. Indeed, in the adult carp, the apical
cytoplasm of the enterocytes of the medium intestine
shows the presence of a dense tubolovesicular network
that form a voluminous supranuclear body. However,
the supranuclear bodies are not related to the presence
of food in the intestinal lumen since they are also
present in fasting animals. Therefore, it seems that they
do not result only from the running together of the food
vacuoles but probably arise from the fusion of the Golgi
vesicles. The supranuclear bodies would thus have a dual
origin, endogenous for the hydrolytic enzymes that con-
tain, and exogenous for the di- and tripeptides supplied
by the food which are then further digested inside them
(Noaillac-Depeyre and Gas 1973).
Furthermore, the aforementioned acidophilic and

PAS-positive substance that we found in the vacuoles of
fish fed with diet C was absent in the distal intestine of
fish fed with diet B, suggesting that butyrate supplemen-
tation of the diet have had a mitigation effect in the
intestine of fish.
Although the inflammatory cells were infiltrated less

than in the distal intestine of fish fed with diet C and were
more concentrated at the mucosal and submucosa level,
we found a significant number of leukocytes as confirmed
by the positive staining with the CD45 antibody. TEM
analysis of enterocytes showed a focal alteration at the
microvilli level. However, other areas appeared much less
compromised, microvilli were regularly displayed, and a
developed apical tubulo-vesicular system was evident, sug-
gesting an intense phagocitosys activity The cells showed
supranuclear vacuoles with dishomogeneous content:
partly dense, like that found in the fish of group C, and
partly clear; this aspect suggests that in these vacuoles a
partial digestion of the content occurs.
In fish fed with diet T, the muscle layers were rather

developed. The villi folds were long and regular, with
enterocytes showing a limited number of vacuoles and
an increased number of Goblet cells confirming a strong
inflammation reaction, which were mainly concentrated
in the medioapical part of the fold. Leukocytes, immu-
noreactive to the CD45 antibody, were still present in
both, the mucosa and the submucosa, similar to those
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observed in fish fed with diet B. The TEM images of
enterocytes were very different from those in fish fed
with diets C and B, with cells showing well-displayed
microvilli frequently covered by a protective mucus
layer, no alterations in the structure, an apical tubulo-
vesicular system, and supranuclear vacuoles filled with a
heterogeneous substance, including membranous bodies
suggesting that an autophagic process was in progress.
To our knowledge, no other example of taurine used as
a feed additive causing autophagic processes has been
reported in the literature, and thus this finding should
be further investigated. However, this process seems to
enable enterocytes of fish fed with diet T to cope with
the negative effects induced by the SBM diet and con-
tributes to the protection of the intestinal mucosa.
The expression pattern of molecular markers of

inflammatory processes such as the inflammatory
cytokines supported the light and TEM microscopy
observations. The highest transcription level of the pro-
inflammatory IL-1β gene was found in the distal intes-
tine of sea bass fed with diet C, indicating a local tissue
reaction to SBM insult, which was less evident in fish
fed on diets B or T. Cytokine IL-8 was less expressed in
fish fed with diet T than in those fed with diet C or B,
suggesting a protective action of taurine against oxida-
tive stress through the reduction of the inflammatory
cascade induced by oxidative stress. The transcription
activity of IL-10 gene, which is known as anti-
inflammatory cytokine, was strongly reduced in fish fed
with diet T, remaining ,however, relatively high in fish
fed with diets C and B. Among the target cytokines, only
IL-6 gene expression was not affected by dietary butyrate
or taurine supplementation. Proinflammatory IL-6 is of
particular interest since it is expressed to a small extent
in normal colonic epithelium but to a much greater
degree in colonic carcinomas (Shirota et al. 1990). In
human colonic cells, increased expression of both IL-6
and its receptor IL-6R have mainly an anti-apoptotic
effect (Yuan et al. 2004). IL-6, indeed, upregulates the
expression of anti-apoptotic protein Bcl-xl (Fujio et al.
1997; Scwarze and Hawly 1995). Yuan and colleagues
(2004), clearly demonstrated that butyrate downregulates
IL-6 signaling in human colonocytes by inhibiting IL-6
receptor rather than IL-6 expression. Similarly, in our
study, butyrate did not influence IL-6 expression, but we
cannot exclude that, even in fish, butyrate could act
principally on IL-6 receptor rather than in IL-6 expres-
sion. So, this is an issue that requires further
investigation.
It is well documented that taurine inhibits the over-

production of inflammatory mediators such as TNFα
(Kim and Cha 2014; Locksley et al. 2001). TNFα is
known to stimulate further production of itself and to
induce the expression of other pro-inflammatory
mediators, such as IL-6, IL-8. TNFα was expressed at
higher levels in the intestine of sea bass fed with diet B,
which induced an upregulation also of IL-8 but not of
IL-6. Moreover, higher expression of TNFα in fish re-
ceiving B diet supported the TEM results indicating a
promotive effect of butyrate in increasing cellular
turnover.
Our findings on cytokine activity are mainly in agree-

ment with the literature. Indeed, in the intestine of carps
receiving soy as protein source (Urán et al. 2008a), a
peak of IL-1β was observed after the first week of feed-
ing, and the expression of this gene as well as that of
TNFα remained high over the control levels for the
entire experiment. In the same study, a strong upregula-
tion of IL-10 was observed after one week of SBM feed-
ing, but at weeks 3 and 5, expression levels were
downregulated at values either lower or similar to the
control (Urán et al. 2008a). In zebrafish fed on diets con-
taining different amounts of SBM, Hedrera et al. (2013)
reported a significant increase in the intestinal transcrip-
tion of the mRNA coding for proinflammatory cyto-
kines, such as IL-1β and IL-8. The transcriptional
activity of IL-10, known to have an anti-inflammatory
action, was increased in the group receiving feed with
soy protein, too.
Conclusions
European sea bass fed on a diet containing a concentra-
tion of a soy protein source close to 30% (16.7% as SBM
and 12.8 as full-fat soy) for 2 months developed an in-
flammatory status in the distal intestine. Both butyrate
and taurine, at concentrations as low as 0.2%, had some
mitigating effect on the symptoms of inflammation, but
the underling mechanisms of action seem different. The
mechanisms underlying these effects should be further
investigated along with any possible synergistic effect of
butyrate and taurine in the feed in normalizing the intes-
tinal abnormalities caused by soybean meal.
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