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Abstract

The development of sex-specific genetic assays in a species provides both a method for identifying the system of
sex determination and a valuable tool to address questions of conservation and management importance. In this
study, we focused on the identification of single nucleotide polymorphisms (SNPs) that differentiate genetic sex in
burbot Lota lota. Burbot are the only true freshwater representative of the cod family and a species of conservation
and management importance throughout Eurasia and North America. To identify sex-specific SNPs, we utilized
restriction site-associated DNA sequencing (RADseq) to interrogate thousands of SNPs in burbot samples of known
phenotypic sex. We discovered 170,569 biallelic SNPs, none of which fit the pattern expected under female
heterogamety. However, we identified 22 SNPs that fit the pattern expected under male heterogamety (males
heterozygous XY, females fixed XX) and, from these, developed two genetic assays that robustly (~ 97% genotyping
success) and accurately (> 99% correct) sexed burbot samples. These sex-specific genetic assays will benefit
growing conservation aquaculture programs for this species and allow future assessments of sex-specific migration,
growth, and mortality.
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Introduction
Burbot Lota lota are a holoarctic species adapted to cold-
water rivers and lakes throughout Eurasia and North
America. Although their exclusive freshwater life history
differs from other species in the order Gadiformes, as
adults, they share the piscivorous behavior of their marine
cousins and often serve as an apex predator in the
environments in which they live. Worldwide, many burbot
populations have been extirpated or are in severe decline,
attributed to habitat alterations or loss from dam develop-
ment, invasive species, over-exploitation, and climate
change (Stapanian et al. 2010). In response to these
declines, several breeding and reintroduction programs
have been initiated in both Europe and North America
(Paragamian and Hansen 2011; Vught et al. 2007). One of
the largest conservation reintroduction programs for
burbot exists in Idaho as part of an effort to restore a
transboundary population native to the Kootenai River

basin in the USA and Canada. This population once
supported a popular sport and commercial fishery and has
been an important food resource for the Kootenai Tribe
of Idaho for millennia (EPA 2016 and references within).
However, as a result of dam development, which altered
flow and temperature regimes and nutrient supply within
the Kootenai River, the population crashed in the late
1970s (Paragamian et al. 2000). With the identification of
fewer than 50 wild fish estimated in 2004 and little to no
recruitment, the population was considered functionally
extinct (Paragamian et al. 2008).
In an effort to rebuild the population, managers

started experimenting with conservation aquaculture
techniques for burbot in 2006 (Jensen et al. 2008) and
the first stocking of hatchery-reared burbot in the
Kootenai River occurred in 2009. Supplementation has
continued annually and has involved the angling and
spawning of wild burbot from Moyie Lake in British
Columbia, Canada. Moyie Lake was chosen as a donor
population because it is in the Kootenai River Basin and
large enough to avoid impacting the spawning
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population. Following spawning on Moyie Lake, fertil-
ized eggs are transported to hatchery facilities in Idaho
for incubation, hatching, and rearing, prior to release
into the Kootenai River. While the egg-collection pro-
gram from Moyie Lake broodstock has been successful
in increasing the burbot population in the Kootenai
River, successful reproduction of hatchery-released fish
has not yet been documented (Ross et al. 2018).
Given the logistical constraints (time, cost, and inter-

national transport) of using Moyie Lake broodstock,
managers have been interested in collecting and incorp-
orating adults that have survived and reached sexual ma-
turity within the Kootenai River. Additionally, managers
were interested in experimenting with spawning tech-
niques that more closely mimic the reproductive behav-
ior of wild burbot. In the wild, burbot are communal
spawners, forming spawning balls consisting of many
males surrounding one or two females (Cahn 1936). To
mimic this behavior, managers have experimented with
volitional spawning in tanks. Complicating these experi-
ments is that burbot exhibit few sexually dimorphic
characteristics and broodstock management requires
segregating males and females prior to the spawning
window before distributing to tanks in different sex
ratios. To aid in broodstock management, our goal in
this study was to identify sex-specific genetic assays in
burbot. If successful, we would provide a tool that could
assist in conservation aquaculture and population moni-
toring and provide evidence of the species’ sex determin-
ation system.

Methods
RADseq library preparation
We extracted DNA from 18 phenotypic males and 18
phenotypic females used during spawning at Moyie Lake
in 2015, using the nexttec™ Genomic DNA Isolation Kit
from XpressBio (Thurmont, Maryland). To construct
RAD libraries, we followed methods developed and
described by Ali et al. (2016). Briefly, extracted DNA
was quantified using a Qubit® 2.0 Fluorometer (Life

Technologies) and the Qubit® dsDNA HS Assay Kit and
normalized to 100 ng in a 10-ul volume. Digests were
performed with the PstI restriction enzyme (New
England Biolabs, Ipswich, MA, USA) at 37 °C for 60 min,
then 85 °C for 30 min. BestRad adaptors were ligated to
the digested DNA (SbfI cut sites), and the ligated DNA
was sheared using a Q800R2 DNA Sonicator (Qsonica,
LLC) for 4:30 min at 20% capacity and 4 °C. Resulting
DNA fragments (~ 400 bp) were cleaned and isolated
using micro-magnetic beads (Dynabeads, Life Technolo-
gies). Sequencing libraries were produced via PCR with
P1 and P2 primers. Resulting libraries were sequenced
on a NextSeq 500 platform (Illumina, San Diego, CA,
USA) to generate raw sequencing paired-end reads of
150 base pairs.

Bioinformatics and candidate selection
Data analysis was primarily performed with Stacks v1.28
(Catchen et al. 2013). First, a custom Python script was
used to evaluate paired reads and “flip” them as neces-
sary so that the restriction enzyme cut site was present
in read one. The Stacks programs process_radtags and
clone_filter were then used with default settings to
demultiplex and remove reads with ambiguous barcodes,
no cut site, low quality scores, or PCR duplicates. The
de novo Stacks pipeline (ustacks, cstacks, and sstacks)
was then used with default settings (m, M, and n set to
three, two, and one, respectively) to discover and geno-
type SNPs. After genotyping, candidate sex-linked SNPs
were chosen based on having the pattern of one sex be-
ing only heterozygous and the other sex being fixed for
one allele. We selected top candidates for further testing
based on the total number of fish genotyped by Stacks
for a given SNP.

Candidate testing and validation
Primers and fluorescently labeled hydrolysis probes
were designed for the four top candidates. Additional
samples were genotyped for each via PCR and end-
point quantification of fluorescence on an Applied

Table 1 Two sex-specific SNP assays developed in this study

Assay Name Complete sequence Forward primer
sequence

Reverse primer sequence VIC probe FAM probe

Llo186187_37 TGCAGCGCACCTGTGA
AGGGGTATGAATAGAGG
GGGG[G/T]GTGTGAACCC
AGAGCTGCCAGACTGA
CTGGCGCCG

TGCAGCGCACCTGTGAA CGGCGCCAGTCAGTCT TTCACACCCCCCCCTC TTCACACACCCCCCTC

Llo100864_67 TGCAGATGCAGGTGTGATC
CTTCATGTCTGAACGGTCC
CCTGGTGACACCAGCATCA
GTCACTGTCTGG[C/G]CTGCT
CTGCTCTCCTGGCCCCTCT
CCCTCCCGCTGT

ACGGTCCCCTGGTGACA ACAGCGGGAGGGAGAGG AGTCACTGTCTAGGCTGC CACTGTCTGGGCTGC
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Biosystems 7500 real-time PCR system with Taqman
Universal PCR Master Mix (Thermo Fisher). The
thermoprofile used for all markers was as follows: (1)
initial denature at 95 °C for 10 min, (2) denature at
92 °C for 15 s, (3) anneal and extend at 62 °C for 1
min, and (4) repeat steps 2 and 3, 44 more times.
The genotypes of these samples were evaluated for

concordance with known phenotypic sex and for the ab-
sence of fish homozygous for the presumptive Y-linked al-
lele (all candidates indicated male heterogamety).

Results
A total of 669,825,766 raw reads were acquired for all
samples, and after removal of reads with ambiguous

Fig. 1 Allelic discrimination plot for Llo186187_37. Example of an allelic discrimination plot showing diagnostic clustering of XX females (red circles)
and XY males (green circles) using the Llo186187_37 assay. The x-axis is associated with the “A” nucleotide, while the y-axis is associated with the “G”
nucleotide. The black x’s on the bottom left of the plot are no template controls
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barcodes or cut sites, low quality, or PCR duplicates, a
total of 567,127,714 reads (84.7%) remained for analysis.
A total of 170,569 biallelic SNPs were found that were
genotyped in at least 13 males and 13 females. Of these,
none fit the pattern expected under female heterogamety
(females heterozygous, males fixed). Twenty-two SNPs
were found that fit the pattern expected under male het-
erogamety (males heterozygous, females fixed). Four of
these SNPs were genotyped using Stacks at a minimum
of 34 samples and were selected for Taqman assay devel-
opment. Initial testing of the Taqman assays identified
two (Llo186187_37 and Llo100864_67) that yielded scor-
able clusters and expected genotypes and were chosen
for further testing and verification (Table 1, Fig. 1). The
other two assays were discarded from further testing.
The two chosen assays were subsequently screened on
445 mature phenotypic females and 475 mature pheno-
typic males (Table 2). Assay Llo186187_37 yielded an
average genotyping success rate of 96% and accurately
sexed all successfully genotyped samples. Assay Llo100864_
67 yielded an average genotyping success rate of 98%. It
accurately sexed all successfully genotyped phenotypic
males and accurately sexed 440/445 of the phenotypic
females (99%).

Discussion
Systems of sex determination vary widely among fish spe-
cies, with examples of both environmental sex determin-
ation (Struussmann et al. 1996) and genetic sex
determination. Within the category of genetic sex
determination, systems of male heterogamety (male-deter-
mining allele is dominant (Chourrout and Quillet 1982,
Komen et al. 1991)) and female heterogamety (female-de-
termining allele is dominant (Dabrowski et al. 2000,
Glennon et al. 2012)) are most common. However, iso-
lated examples of polygenic systems can also be found
(Vandeputte et al. 2007, Delomas and Dabrowski 2018).
The identification of a SNP with genotypes that are
predictive of phenotypic sex demonstrates genetic sex
determination in burbot. Males and females were ob-
served to be heterozygous and homozygous for the major
allele, respectively, at this locus, and so it can be inferred
that burbot have a system of male heterogamety (males
are XY and females are XX). This system has been

observed in the Atlantic cod Gadus morhua (Whitehead
et al. 2012), which is in the same order, Gadiformes, as
burbot, but sex determination systems have been observed
to vary even among species in the same genus (Cnaani et
al. 2008), and so this is not necessarily due to conservation
of the sex-determining mechanism.
The successful development of two sex-specific genetic

assays for burbot should be of immediate use to man-
agers working on reintroduction and supplementation
efforts aimed at recovering burbot populations. Immedi-
ately, it will help managers of conservation supplementa-
tion efforts in the Kootenai River basin, as they
experiment with volitional spawning techniques. In
addition, these assays should greatly benefit future con-
servation and management efforts by providing a tool to
assist in estimates of sex-specific migration, growth, and
mortality of this species. These monitoring and evalu-
ation efforts will be necessary in the Kootenai River and
for other supplemented populations worldwide, aimed at
providing sustainable subsistence and recreational
harvest of burbot into the future.

Conclusion
This study is the first to identify sex-specific genetic
markers in burbot and the first to provide evidence that
burbot have a genetic sex-determining system of male
heterogamety. The two sex-specific SNP genetic markers
we developed were both robust (~ 98% genotyping com-
pleteness) and accurate (~ 99% concordance with known
phenotypic sex). This study provides another example of
the utility of RAD sequencing for the identification of
sex-specific genetic assays and the system of sex deter-
mination in non-model organisms. The successful devel-
opment of sex-specific genetic assays for burbot will
benefit both conservation and management of this
species.
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