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Introduction 

The global fishing industry has experienced decreased produc-
tion mainly due to depleted fishery resources and the strength-

ening of international fishing standards. In response, fish pro-
duction by the aquaculture industry has steadily increased to 
provide alternative fish resources. Despite these increases, the 
Korean aquaculture industry has shown stagnant growth due to 
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Abstract
Various approaches have been applied to transform aquaculture from a manual, labour-intensive industry to one dependent on 
automation technologies in the era of the fourth industrial revolution. Technologies associated with the monitoring of physical 
condition have successfully been applied in most aquafarm facilities; however, real-time biological monitoring systems that can 
observe fish condition and behaviour are still required. In this study, we used a video recorder placed on top of a fish tank to ob-
serve the swimming patterns of rock bream (Oplegnathus fasciatus), first one fish alone and then a group of five fish. Rock bream 
in the video samples were successfully identified using the you-only-look-once v3 algorithm, which is based on the Darknet-53 
convolutional neural network. In addition to recordings of swimming behaviour under normal conditions, the swimming pat-
terns of fish under abnormal conditions were recorded on adding an anaesthetic or lowering the salinity. The abnormal condi-
tions led to changes in the velocity of movement (3.8 ± 0.6 cm/s) involving an initial rapid increase in speed (up to 16.5 ± 3.0 cm/s, 
upon 2-phenoxyethanol treatment) before the fish stopped moving, as well as changing from swimming upright to dying lying 
on their sides. Machine learning was applied to datasets consisting of normal or abnormal behaviour patterns, to evaluate the 
fish behaviour. The proposed algorithm showed a high accuracy (98.1%) in discriminating normal and abnormal rock bream be-
haviour. We conclude that artificial intelligence-based detection of abnormal behaviour can be applied to develop an automatic 
bio-management system for use in the aquaculture industry.
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its manual labour-intensive farming techniques. To overcome 
this problem and create a more systematic aquaculture man-
agement system that is compatible with the oncoming fourth 
industrial evolution, it is important to automate some aspects 
of the aquaculture industry through innovations such as smart 
fisheries and automatic sensors for water temperature and dis-
solved chemical detection, as well as automatic feeding systems 
and real-time underwater monitoring. Although many tech-
nologies have already been adapted to monitor physical tank 
and cage conditions, those for automatic monitoring of fish be-
haviour are still needed for real-time fish condition assessment.

Fish have been used as model animals in behaviour mon-
itoring studies, particularly those exploring image analysis of 
behaviour data collected by underwater acoustic cameras, with 
and without external stimulation. Underwater acoustic cameras 
have been applied to collect fish echo data to analyse the dis-
tribution of fishery resources and its effects on fish movement 
(Jang et al., 2016). Video tracking has also been used to trace 
moving organisms, on land and in air and water (Maggio & Ca-
vallaro, 2011; Noldus et al., 2001). However, to date, no studies 
have explored the adaptation of automatic real-time monitoring 
systems that use artificial intelligence to analyse movement pat-
terns that may indicate the health status or abnormal conditions 
of fish in aquaculture systems.

Deep learning is part of a broader family of machine learn-
ing methods based on artificial neural networks (Bengio et 
al., 2013; LeCun et al., 2015; Schmidhuber, 2015). With recent 
improvements in computational speed, various algorithms have 
been exploited to overcome the limitations of deep learning for 
real-time applications of video or image data, which are other-
wise complex and time-consuming. Convolutional neural net-
work (CNN) is a deep-learning technique that provides rapid 
analysis of calculations performed using a graphics processing 
unit (GPU); specialised CNNs have been developed for region 
extraction (e.g., R-CNN; Girshick et al., 2015) and object de-
tection (e.g., you only look once [YOLO]; Redmon & Farhadi, 
2018). The YOLO algorithm simultaneously integrates and pro-
cesses object detection and recognition patterns, and therefore 
is suitable for rapid, high-accuracy real-time applications.

Rock bream (Oplegnathus fasciatus) inhabits rocky marine 
areas in shallow coastal regions of Korea, Japan, Taiwan, and 
Hawaii (Choi et al., 2002); its economic value is increasing in 
the Korean aquaculture industry. Despite technological ad-
vancements in artificial rock bream seeding (Fukusho, 1979; 
Kumai, 1984), its aquaculture productivity requires further 

improvement. Studies have examined the photo-response of 
rock bream (Jang et al., 2019). Artificial intelligence algorithms, 
including a deep-learning neural network, have been developed 
for identifying fish species (Allken et al., 2019). However, to 
solve problems associated with automated fish health moni-
toring systems in aquaculture, it is still necessary to develop an 
algorithm that can detect abnormal fish behaviours, which may 
require training and validation datasets. This study recorded the 
swimming patterns of healthy rock bream and those exposed to 
unhealthy conditions. A deep learning-based algorithm was ap-
plied to evaluate rock bream behaviour based on recorded fish 
movement data.

Materials and Methods

Materials
Rock bream O. fasciatus (body weight, ~8.8 ± 1.8 g; body length, 
74.0 ± 6.0 mm) were obtained from Ji-Yeon Fisheries (Geoje, 
Korea). The animal tracking system EthoVision XT10 was from 
Noldus (Wageningen, the Netherlands). We purchased the 
anaesthetic 2-phenoxyethanol from Sigma-Aldrich (St. Louis, 
MO, USA) and obtained a charge-coupled device (CCD) cam-
era from Samsung Electronics (Suwon, Korea). The YOLO v3 
algorithm, which is based on a Darknet-53 CNN backbone, was 
used to analyse fish behaviour.

Fish rearing and video recording
Rock bream were maintained in a 2-ton circulation tank prior 
to behaviour monitoring. The breeding water was partially 
replaced with sand-filtered, aerated seawater (salinity, 33 ± 0.5 
psu; pH 7.4 ± 0.7). Rock bream were acclimated for 1 week 
in a rectangular water tank (1 m × 0.45 m, natural seawater, 
18℃–20℃). The water salinity experiment was conducted 
in a 1 m × 0.6 m tank with an inlet and outlet for exchanging 
water. After acclimatisation, fish movement was recorded by a 
CCD camera positioned at the top of the tank (1 m above the 
water surface), first for a single fish and then for a group of five 
fish. We induced abnormal rock bream behaviour using two 
methods: adding an anaesthetic (2-phenoxyethanol; 0.05% v/
v) to the water tank and changing the tank water from seawater 
to fresh water. A complete change from seawater to fresh water 
was achieved in 20 min using the tank inlet and outlet. In each 
experiment, we recorded fish behaviour for 15–30 min after in-
ducing the abnormal behaviour. The housing and maintenance 
of the fish conformed to the regulations of The Institutional An-
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imal Care and Use Committee of Pukyong National University 
(Busan, Korea).

Dataset configuration
The collected data included 10,110 rock bream images obtained 
from the video recording. Among these, we randomly selected 
210 images, and divided these into a training dataset containing 
168 images and a test dataset containing 42 images. No images 
were included in both datasets.

Object detection using deep learning
In pre-processing, the rock bream images were adjusted to a 

standard size of 416 × 416 × 3 for analysis by the YOLO algo-
rithm. Images of rock bream swimming upright and lying on 
their side were considered to exhibit normal and abnormal 
swimming, respectively. The input images were entered into the 
pretrained CNN, which predicted bounding box information 
including the location and size of the detected object in the in-
put image for target detection. Within a total learning time of 
2 h, class-specific bounding boxes were produced for all input 
images (Fig. 1).

Algorithm evaluation
The ability of the algorithm to detect rock bream displaying 

Fig. 1. Architecture of the deep-learning algorithm used in this study to detect abnormal behaviour in rock bream. A video 
recording was uploaded to the detection program, and input frames were randomly sampled at a defined interval and divided 
into training and test datasets. A convolutional neural network based on the Darknet-53 framework analysed the images to detect 
abnormal swimming behaviour.
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abnormal behaviour was evaluated based on the training data, 
based on the rates of true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN) in a confusion ma-
trix. The pixel accuracy, precision, and recall were calculated as 
follows:

Pixel accuracy = (TP + TN) / (TP + TN + FP + FN)
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
F1 = 2 × Precision × Recall / (Precision + Recall)

Results and Discussion

Collecting data on abnormal rock bream behaviour
Behaviour analysis is important for confirming the health of tar-
get fish in aquaculture. In this study, images of swimming rock 
bream, one of the main aquaculture species in Korea, were used 
to explore the application of an artificial intelligence algorithm 
to analysing images for species identification and detecting ab-
normal swimming behaviour. This used a camera located in a 
fixed position on top of a tank containing one rock bream at a 
time. Most of the fish swam upright (Fig. 2). In addition to im-
age analysis for species identification using artificial intelligence 
(see below), the speed of the rock bream was calculated by trac-
ing their movements before and after adding an anaesthetic or 
abruptly changing the water salinity. Healthy rock bream moved 
at an average speed of 3.8 ± 0.6 cm/s, but after 2-phenoxyethanol 
(2-PE) treatment their speed initially increased to 16.5 ± 3.0 cm/
s, and then they gradually slowed and finally stopped and lay on 
their sides (Fig. 3). The slightly faster speed (Fig. 2b) observed in 
the water salinity experiment might result from the larger tank 

used for this experiment. The condition-dependent change was 
also observed in images of rock bream taken from a fixed posi-
tion, which involved a transition from a narrower top view of the 
fish under normal conditions, to a wider lateral view of the rock 
bream following the 2-PE or low salinity treatments (Fig. 3 in-
sets). Since these behaviours mimic those of rock bream in poor 
condition in aquafarms, these images can be used as training data 
for evaluating the suitability of the deep-learning algorithm for 
detecting unhealthy aquafarm conditions.

Performance evaluation
Artificial intelligence has been applied to many industries, in-
cluding aquaculture. In this study, images of a swimming rock 
bream were entered into a pretrained CNN for target detection. 
Fig. 2 shows that rock bream can be clearly identified from 
images of one or many individuals in a tank using the CNN-
based YOLO algorithm. The application of artificial intelligence 
was extended to detect a disastrous situation in an aquaculture 
facility by analysing the swimming patterns of rock bream. This 
used images of rock bream swimming upright or lying on their 
sides as training data for normal and abnormal situations, re-
spectively. In each iteration of the training process, class-specific 
bounding boxes were produced for each image, and the count 
information was updated. Within a total learning time of 2 h, 
the algorithm successfully learned to discriminate normal and 
abnormal swimming behaviour (Fig. 4). We also evaluated the 
training process of the YOLO algorithm through loss-of-func-
tion analysis. Loss function is the current learning indicator 
of deep-learning models and its value should be minimised as 
the number of lessons increases. Loss was minimised within 
40 learning iterations (Fig. 5) with its value converging on zero. 

Fig. 2. Photographs of rock bream taken from tanks containing a single fish (a), a group of five fish (b), or hundreds of rock 
bream (c). Objects identified as a rock bream using YOLO v3 are in rectangles. YOLO, you-only-look-once.
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The result confirmed the suitability of the algorithm for detect-
ing unhealthy aquafarm conditions. We further evaluated the 
performance of the YOLO algorithm for detecting abnormal 
rock bream behaviour using a confusion matrix based on the 
relationship between actual measurements and predicted results 
with data described as TP, TN, FP, and FN. Based on the learned 
data, the confusion matrix of abnormal rock bream detected 

showed TP = 78, FP = 0, FN = 2, and TN = 25 for the normal 
conditions and TP = 25, FP = 2, FN = 0, and TN = 78 for the 
abnormal conditions (Table 1). From these data, we calculated 
the accuracy (0.981), precision (0.963), recall (0.988), and F1 
score (0.974) of the algorithm. Together, these results indicate 
excellent algorithm performance.

Fig. 4. Deep learning-based detection of rock bream exhibiting abnormal behaviour. A photograph of five fish in a tank 
taken 15 min (inlet) after adding 0.05% (v/v) 2-phenoxyethanol. Yellow and green boxes indicate normal and abnormal swimming 
behaviours, respectively, as detected by the “you only look once” algorithm.

Fig. 3. Speed of rock bream measured on treatment with 0.05% (v/v) 2-phenoxyethanol (a) and water salinity change (b) 
and images taken from above the tank under the corresponding conditions. The velocity of rock bream was calculated from the 
distance moved within a time interval. Red arrows indicate the times when 0.05% (v/v) 2-phenoxyethanol was added or the salinity 
changed. Representative images of a rock bream with normal (left) and abnormal (right) behaviour induced by each treatment are 
shown.

2-PE

(a) (b)

Fig.3
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Artificial intelligence-based monitoring in aquaculture
The development of artificial intelligence-based technologies 
suitable for application in aquaculture has the potential to 
transform this manual labour-intensive industry to rely on 
more efficient automated systems (Yang et al., 2020). Various 
deep-learning algorithms have been applied in marine biology 
for the development of smart fisheries, including automated fish 
detection based on cascade classification of Haar-like features 
in underwater images captured by a remotely operated vehicle 
in an ocean survey (Cutter et al., 2015) and deep learning-based 
fish detection (Levy et al., 2018). Recent deep learning-based 
studies have focused on detecting fish species using CNNs (Han 
et al., 2020), classifying goldfish species using pruned neural 
networks (Ayob et al., 2021), and detecting sea cucumber using 
a single-shot multibox detector (Ma et al., 2019). This study also 
proved that rock bream can be identified using an artificial in-
telligence-based algorithm.

In aquaculture farms, real-time fish monitoring would 
allow machines to automatically detect deteriorating fish 
condition and trigger an alarm before serious damage could 
occur. To develop an artificial intelligence-based algorithm for 
identifying abnormal situations in aquaculture, it is critical to 
secure learning data corresponding to each situation. This study 
obtained behaviour datasets of rock bream under abnormal sit-
uations using anaesthetic or low-salinity treatments. Abnormal 
behaviors of fish under harsh conditions include an irregular 
movement, reduced food intake, increased surfacing behaviors, 
changes in the frequency of gill opening, sluggish swimming, 
delayed response, loss of vertical equilibrium, departure from 
crowds, and scrubbing of the tank floor. Changes in swimming 
speed is another criterion used to define abnormal behavior in 
fish. This was shown the phenomenon that, immediately after 
administration of the anesthetic, the speed of the fish increased 
rapidly and then decreased and eventually stops. Among these 
behavioral characteristics, the flipping phenomenon of the 
fish, one of the simplest indicators, was used to identify the ab-
normal behavior in this study. The study results indicate that a 
deep-learning algorithm can be used to detect abnormal swim-
ming under aquaculture conditions after learning representa-
tive patterns of normal and abnormal swimming behaviour. 
The accuracy of the proposed algorithm for detecting abnormal 
swimming by anaesthetic-treated rock bream was 98.1%. Our 
findings suggest that deep learning has the potential to improve 
aquafarm efficiency and prevent economic losses through auto-
mated monitoring of fish. 
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Fig. 5. Learning curve for abnormal object detection of rock 
bream. The plot shows changes in loss function (the current 
learning indicator) with learning iterations.

Table 1. Confusion matrix used to evaluate the ability of the 
deep-learning algorithm to detect abnormal rock bream 
swimming behaviour
Abnormal class Actual behaviour

Abnormal Normal

Predicted behaviour Abnormal 25 (TP) 2 (FP)

Normal 0 (FN) 78 (TN)

The detection of abnormal fish was described as true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN) depending on the relationship between the actual 
measurements and predicted results.
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