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Introduction 

Total world fisheries and aquaculture from inland and marine 
in 2018 were 178.5 million tonnes, of which 87.6% were for 
human consumption (FAO, 2020). This number is estimated 
to rise each year due to the population growth, and changes 
in consumption habits due to the increasing knowledge about 

the health benefit effects of marine organisms. The fishing pro-
cessing industries, however, create large amounts of processing 
by-products that include head, tail, skin, scale, viscera, and bone 
(Al Khawli et al., 2020; Zeller et al., 2018). It is estimated that 
35% of the harvested fish is lost during the postharvest process, 
and then 70% of processed fish becomes by-products (FAO, 
2020). The amount of marine processing by-products varies 
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Abstract
Increased fisheries products have raised by-products that are discarded due to low economic value. In addition, marine by-prod-
ucts are still rich in protein and nutritional value that have biological activities and give benefits to human health. Meanwhile, 
there is raised pressure for sustainability practices in marine industries to reduce waste and minimize the detrimental effect on 
the environment. Thus, valorization by-products through bioactive peptide mining are crucial. This review focus on various ways 
to obtain bioactive peptides from marine by-products through protein hydrolysis, for instance chemical hydrolysis (acid and 
based), biochemical hydrolysis (autolysis and enzymatic hydrolysis), microbial fermentation, and subcritical water hydrolysis. 
Nevertheless, these processes have benefits and drawbacks which need to be considered. This review also addresses various 
biological activities that are favorable in pharmaceutical industries, including antioxidant, antihypertensive, anticancer, anti-obe-
sity, and other beneficial bioactivities. In addition, some potential marine resources of Indonesia for the marine biopeptide from 
their by-product or undesired marine commodities would be addressed as well.
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depending on species, size, season, and the fishing grounds 
(FAO, 2020; Villamil et al., 2017; Wang et al., 2019a). In salmon 
aquaculture, 41.5% of its biomass are by-products and only 15% 
of its by-products go to human consumption which has a full 
potential worth of almost 40 million USD (Stevens et al., 2018). 
Utilization of by-products can give more value to the fisheries 
and aquaculture industries such as biofilm packaging developed 
from skin collagen of a cartilaginous fish (Mustelus mustelus). 
This biofilm exhibited ultraviolet protecting properties and an-
tioxidant activity which might be used to improve the shelf life 
of food or its perishable raw material (Azaza et al., 2022; Ben 
Slimane & Sadok, 2018). This can minimize environmental im-
pact by reducing waste and pollution and also improve the eco-
nomic gain of these industries (Marti-Quijal et al., 2020; Ucak 
et al., 2021).

Fish by-products have been utilized as raw material, not 
only in food industry, but also in pharmaceutical industries due 
to their bioactive compound (Abhari & Khaneghah, 2020; Dave 
& Routray, 2019; FAO, 2020). For many years, a great deal of 
interest has been developed by many research groups towards 
identification of bioactive materials from marine organisms 
including fish processing by-product. With this regard, it has 
been utilized in production of protein hydrolysate (Abhari & 
Khaneghah, 2020; Zamora-Sillero et al., 2018), fish oil (Jackson 
& Newton, 2016), therapeutants (Ashraf et al., 2020; Stevens 
et al., 2018) and even cosmetics (Nghia, 2020; Venkatesan et 
al., 2017). One of the valuable functional materials in marine 
processing by-products is the marine bioactive peptides, which 
have well documented beneficial health effect (Camargo et al., 
2021; Daroit & Brandelli, 2021). However, there is a huge scope 
of using bioactive peptides from fish processing by-products 
as resources in the food and pharmaceutical industries; hence, 
further research is needed. Scientists should work out sustain-
able ways to refine fish by-products while governments and 
industries invest in using this abundant and cheap renewable 
resource. In this contribution, we focused on the current isolat-
ed bioactive peptides from marine processing by-products. In 
addition, their biological activities, as well as their potential as 
nutraceuticals were also discussed.

Development of Bioactive Peptides Derived 
from Fish By-Products

Protein plays various essentials parts, from structural and phys-
iological support to improving health and body condition (Choy 

et al., 2021; Foegeding et al., 2017; Kumari et al., 2021; Ziegler 
et al., 2020). Nowadays greater recognition has been shown in 
developing proteins as dietary food since they provide a rich 
source of bioactive peptides (Chakrabarti et al., 2018; Foeged-
ing et al., 2017; Gham et al., 2019; Karami & Akbari-Adergani, 
2019). Bioactive peptides are peptide fragments of protein that 
have a beneficial impact on body function or conditions of 
living beings. That functional peptide fragments may contain 
from 2 to 20 amino acids residues and are encrypted within 
the protein sequence. Peptide sequences are released and then 
active after their parent protein is broken apart through protein 
hydrolysis reaction (Chakrabarti et al., 2018; Daroit & Brandelli, 
2021; Karami & Akbari-Adergani, 2019). However, their func-
tion varies due to protein sources, a variation on amino acids 
sequence that builds those peptides, and even molecular weight 
(Chakrabarti et al., 2018; Karami & Akbari-Adergani, 2019; 
Pangestuti & Kim, 2017).

The oceans make up approximately 70% of earth’s surface 
and contain around 243,000 described species (Jo et al., 2017; 
Wang et al., 2017). However, those numbers are 16% of from ma-
rine species. In addition, the marine ecosystem is more complex 
and diverse than the terrestrial because it considers being four-di-
mensional (latitude, longitude, depth, and time) (Costello & 
Chaudhary, 2017). Thus, it remains the largest source of bio-func-
tional compounds, including bioactive peptides. Also, marine 
organisms live in complex habitat and expose to more extreme 
condition than the terrestrial, which make the marine bioactive 
peptides have significant different amino acid compositions and 
sequences from land bioactive peptides (Atef & Mahdi Ojagh, 
2017; Jo et al., 2017; Ucak et al., 2021; Wang et al., 2017).

Recently, fish by-products rise rapidly each year from 
discarded fish body parts, such as head, viscera, skin, bones, 
and scales (FAO, 2020). For instance, in salmon (finfish), ap-
proximately 41.5% of its biomass is by-products such as heads, 
frames and viscera, and other small portions including belly 
flaps, trimmings, blood and skins. Those by-products parts 
contain bioactive protein and peptides (Stevens et al., 2018). 
Regarding the increase in by-product volume, the trend in the 
development of bio-functional ingredients from fish by-prod-
ucts has become a new focus to maximize the value of fish pro-
cessing waste (Atef & Mahdi Ojagh, 2017; Coppola et al., 2021; 
Zamora-Sillero et al., 2018). A considerable amount of research 
has been done in this area. Interestingly, many researchers 
highlight the recovery of bioactive peptides from fish waste/
by-products due to their quality proteins and outline their po-
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tential as candidate raw material for bioactive peptide mining 
(Villamil et al., 2017; Zamora-Sillero et al., 2018).

Method in Bioactive Peptide Production

Protein hydrolysate production can be performed using two 
methods. These methods are chemical methods that include 
acid and alkali hydrolysis, and biochemical methods that in-
volve internal or external proteolytic enzymes (Petrova et al., 
2018; Zamora-Sillero et al., 2018). However, there are other no-
table extraction methods, for instance microbial fermentation 
and subcritical water hydrolysis (Guo et al., 2019; Marti-Quijal 
et al., 2020a; Melgosa et al., 2020; Zamora-Sillero et al., 2018). 
The advantages and drawbacks of these extraction process are 
summarized in Table 1. 

Chemical methods are the conventional hydrolysis meth-
ods which utilize chemical agents to break apart protein mole-
cules into several peptide fragments. Those chemical agents can 
be acidic for the acid hydrolysis or alkaline for the alkali hydro-
lysis (Melgosa et al., 2020; Zamora-Sillero et al., 2018). Acidic 
hydrolysis employs hydrochloric acid or sulfuric acid under 
high temperature (up to 138℃) and high pressure (up to 310 
MPa) for several hours during hydrolyzation (Melgosa et al., 
2020; Petrova et al., 2018). After that, the mixture is neutralized 
and dehydrated. However, this process produces a high amount 
of NaCl that hinders the subsequent applications. In addition, 
due to intense heat and pressure, this process diminishes the 
product’s functionality (Petrova et al., 2018; Zamora-Sillero et 
al., 2018). On the other hand, alkali hydrolysis uses calcium, 
sodium, or potassium hydroxide as alkaline agents to divide 

Table 1. Benefits and drawbacks of bioactive peptide extraction from marine by-product
Extraction method Chemical agent Drawback or benefit By-product source Hydrolysate result

Chemical hydrolysis:
•	 Acidic hydrolysis
•	 Alkali hydrolysis

Acidic hydrolysis:
•	 Hydrochloric acid
•	 Sulfuric acid

•	 High temperature (138℃)
•	 High pressure (310 MPa)
•	 Time consuming (hours)
•	 High amount of NaCl by-

product
•	 Protein solubility
•	 Removing heavy metal
(Melgosa et al., 2020; Petrova 

et al., 2018; Shen et al., 2021; 
Surasani, 2018)

Mackerel whole body Recovered protein 49.48% with 
HCl 0.1 M (Álvarez et al., 2018)

Baltic herring whole body Protein yield 30.0% at pH 2.5 
(Nisov et al., 2022)

Cod (head, tail, bones) Protein yield 10%–30% at pH 
2–3 (Abdollahi & Undeland, 
2019)

Salmon (head, tail, bones) Protein yield 30%–50% at pH 
2–3 (Abdollahi & Undeland, 
2019)

Herring (head, tail, bones) Protein yield 30%–50% at pH 
2–3 (Abdollahi & Undeland, 
2019)

Yellowfin tuna liver Protein yield 57.22% at pH 2 
(Shen et al., 2021)

Alkali hydrolysis:
•	 Calcium hydroxide
•	 Sodium hydroxide
•	 Potassium hydroxide

•	 Warm temperature (54℃)
•	 Toxic by-product
•	 Combination acid-alkaline 

to improve protein 
extraction

•	 Improve protein solubility
•	 Reduced bioactivity
•	 Removing heavy metal
(Álvarez et al., 2018; Melgosa et 

al., 2020; Petrova et al., 2018; 
Shen et al., 2021; Surasani, 
2018; Villamil et al., 2017; 
Zamora-Sillero et al., 2018)

Mackerel whole body Recovered protein 74.25% with 
NaOH 0.4 M (Álvarez et al., 
2018)

Baltic herring whole body Protein yield 43.4% at pH 11.5 
(Nisov et al., 2022)

Cod (head, tail, bones) Protein yield 40%–60% at 
pH 11.5–12.5 (Abdollahi & 
Undeland, 2019)

Salmon (head, tail, bones) Protein yield 60%–80% at 
pH 11.5–12.5 (Abdollahi & 
Undeland, 2019)

Herring (head, tail, bones) Protein yield 40%–70% at 
pH 11.5–12.5 (Abdollahi & 
Undeland, 2019)

Yellowfin tuna liver Protein yield 78.98% at pH 12 
(Shen et al., 2021)
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Biochemical:
•	 Autolysis
•	 Enzymatic hydrolysis

Autolysis (endogenous 
enzyme)

•	 Warm temperature (40℃–
60℃)

•	 1–3 h
•	 No additional enzyme
•	 Various optimum working 

condition
•	 Environmental friendly
(de Silva & Senaarachchi, 2021; 

da Silva et al., 2017; Guo et 
al., 2019; Nikoo et al., 2021a; 
Nikoo et al., 2021b; Petrova 
et al., 2018; Vázquez et al., 
2020)

Discarded mud crab Scylla 
serrata

Carotenoprotein content 8.1% 
(de Silva & Senaarachchi, 
2021)

Discarded tiger prawn 
Penaeus monodon

Carotenoprotein content 
16.07% (de Silva & 
Senaarachchi, 2021)

Pacific white shrimp (head, 
shells, appendix and tails)

TCA-soluble peptide ~20% 
(Nikoo et al., 2021b)

Litopenaeus vannamei heads Protein content 43.63% (da Silva 
et al., 2017)

Salmon viscera Protein solubilization 80%–85% 
(Lapeña et al., 2018)

Rainbow trout (head, skin, 
bones and fins)

DH 12.6% (Nikoo et al., 2021a)

Enzymatic hydrolysis:
•	 Alcalase
•	 Papain
•	 Trypsin
•	 Flavorzyme
•	 Neutrase
•	 Pepsin
•	 Prolyve BS
•	 Protamex
•	 Subtilisin
(Bui et al., 2021; 

Mongkonkamthorn et 
al., 2020; Saidi et al., 2018; 
Zhang et al., 2019b)

•	 High specificity
•	 Lower to non-toxic chemical
•	 Optimum working condition 

varied
•	 Biological activity of 

extraction product varied 
between enzymes

(Petrova et al., 2018; Villamil et 
al., 2017)

Skipjack tuna head DH 25.76% with GI digestion 
(pepsin-trypsin) (Zhang et al., 
2019b)

Sarda orientalis dark muscle DH 5%–20% with Protamex (Bui 
et al., 2021)

Tuna Katsuwonus pelamis 
blood

•	 DH 26.5%–36.6% with 
Alcalase

•	 DH 21.1%–41.7% with 
Neutrase

•	 DH 21.7%–41.7% with 
Flavorzyme

(Mongkonkamthorn et al., 2020)

Salmon viscera •	 DH 15%–20% with Pepsin
•	 DH 15%–20% with Neutrase
•	 DH ~15% with Alcalase
•	 DH 10%–15% with Trypsin
(Wang et al., 2020)

Salmon frames DH 10%–11.25% with Subtilisin 
(Valencia et al., 2021)

Salmon heads Protein soluble 61.0 g/L with 
Alcalase (Vázquez et al., 2020)

Salmon frames and fins Protein soluble 69.7 g/L with 
Alcalase (Vázquez et al., 2020)

Rainbow trout heads Protein soluble 47.8 g/L with 
Alacalase (Vázquez et al., 
2020)

Rainbow trout frames and 
fins

Protein soluble 53.9 g/L with 
Alcalase (Vázquez et al., 2020)

Fermentated hydrolysis Lactic acid bacteria:
•	 Anoxybacillus kamchatkensis
•	 Bacillus licheniformis
•	 Lactobacillus plantarum
•	 Pediococcus acidilactici
•	 Pseudomonas aeruginosa
(Ghorbel-Bellaaj et al., 2018; 

Guo et al., 2019; Mechri et 
al., 2020; Nugroho et al., 
2020; Rajendran et al., 2018)

•	 Bacterial growth
•	 Warm temperature
•	 Biological activity of 

extraction product varied 
between fermentation 
system

•	 Optimum working condition 
varied

•	 Sustainable
•	 Efficient
(Guo et al., 2019; Rajendran et 

al., 2018)

Metapenaeus monoceros by-
product

Protein content 42% (Mechri et 
al., 2020)

Shrimp head Protein content 66.7% (Guo et 
al., 2019)

Shrimp M. monoceros (head 
and appendix)

Protein content 47.01% 
(Ghorbel-Bellaaj et al., 2018)

Atlantic salmon (head and 
gut)

Protein content 57% (Rajendran 
et al., 2018)

Tuna viscera Protein content 56.04% 
(Nugroho et al., 2020)
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protein molecules. In contrast to acidic hydrolysis, alkali hydro-
lysis requires a less extreme working environment, for instance 
54℃ (Melgosa et al., 2020; Petrova et al., 2018). Despite lower 
temperature than the acidic process, this alkali method also 
has problematic issues, such as toxic by-products and reduced 
functionality (Petrova et al., 2018; Villamil et al., 2017; Zamo-
ra-Sillero et al., 2018). Nevertheless, this alkali hydrolysis is still 
considered in fish protein extraction to obtain bioactive protein 
hydrolysates (Petrova et al., 2018).

Biochemical extraction methods consist of autolysis and 
enzymatic hydrolysis. The autolysis process utilizes enzymes in 
the substrate to digest its protein molecules (Petrova et al., 2018; 
Zamora-Sillero et al., 2018). Thus, the autolysis does not require 
additional enzymes to put into the mixture. During hydrolysis 
warm working temperature between 40℃ to 60℃ for up to 3 
h is milder than the chemical methods (Nikoo et al., 2021a ; 
Nikoo et al., 2021b; Vázquez et al., 2020). Moreover, this process 
results in better nutritional value. However, since this process 
utilizes its endogenous enzyme, thus the optimum condition 
and products might be inconsistent, driven by body part, spe-
cies, and season (Guo et al., 2019; Nikoo et al., 2019; Nikoo et 
al., 2021b; Petrova et al., 2018; Vázquez et al., 2020). In contrast, 
enzymatic hydrolysis requires external enzymes to perform 
protein digestion, resulting in more specific functionality and 
desirable products (Petrova et al., 2018; Villamil et al., 2017). 
Moreover, both autolysis and enzymatic hydrolysis are consid-
ered to be environmentally friendly due to low energy expendi-
ture to meet the working environment, effective, and less toxic 
chemical waste (Guo et al., 2019; Villamil et al., 2017).

Microorganisms can be used to obtain protein hydrolysate 
from fish by-products through microbial fermentation (Mar-
ti-Quijal et al., 2020a). During fermentation, lactic acid bacteria 

produce a proteolytic enzyme to digest protein molecules on the 
substrate into peptides (Kliche et al., 2017; Martí-Quijal et al., 
2020b). Hydrolysis reaction improves over time with the accumu-
lation of by-product fermentation, lactic acid, and reduction of 
pH environment. This condition gradually becomes more acidic 
and improves fermentation enzyme activity (Marti-Quijal et al., 
2020a; Rajendran et al., 2018). Usually, this fermentation process 
is coupled with enzymatic hydrolysis during bioactive peptide 
extraction to improve the functionality of hydrolysate (Guo et 
al., 2019; Kang et al., 2020; Vázquez et al., 2020). Like enzymatic 
products, the fermentation products are more functional, and 
their process are more efficient, simple, and sustainable (Guo et 
al., 2019; Marti-Quijal et al., 2020a; Martí-Quijal et al., 2020b).

As illustrated in Fig. 1, subcritical water hydrolysis is one of 
the extraction techniques to obtain bioactive peptides. It is con-
sidered a green technology and safe for the environment, and yet 
still effective (Ahmed & Chun, 2018; Melgosa et al., 2020). This 
process employs superheated water or subcritical water, which is 
defined as water maintained in the liquid state at temperatures 
between the current boiling point of water (100℃) and the crit-
ical point of water (374℃) (Ahmed & Chun, 2018; Siahaan & 
Chun, 2020). Under this extreme condition, physicochemical wa-
ter changes dramatically. The viscosity of water is declined, which 
improves water penetration and diffusion into the substrate (Mel-
gosa et al., 2020). In addition, water forms hydronium ion (H3O

+) 
and hydroxide ion (HO-), which perform as acid and based cata-
lyst agents for protein digestion (Ahmed & Chun, 2018; Melgosa 
et al., 2020). Also, these ion concentrations increase at increased 
working temperatures. Thus, this process does not require ad-
ditional proteolytic enzymes due to the existence of those ions 
in the working environment (Choi et al., 2017; Melgosa et al., 
2020). The increased temperature enhances protein digestion rate 

Subcritical water hydrolysis Water •	 High temperature (100℃–
374℃)

•	 High pressure (0.10–22.00 
MPa)

•	 Fast (< 60 min)
•	 Protein degradation at 

higher temperature
(Ab Rahman et al., 2019; 

Ahmed & Chun, 2018; Lee et 
al., 2021)

Fish viscera Protein content 1.705 g/L BSA 
at 180℃ (Ab Rahman et al., 
2019)

Tuna skin DH 14.47% at 250℃ (Ahmed & 
Chun, 2018)

Abalone viscera Protein content 68.5% at 230℃ 
(Hao et al., 2019)

Penshell viscera Protein content 36.14 mg/g BSA 
at 230℃ (Lee et al., 2021)

Sardine waste (heads, spines 
and viscera)

Protein content 73.2% at 190℃ 
(Melgosa et al., 2020)

TCA, tricarboxylic acid; DH, degree of hydrolysis; GI, gastrointestinal; BSA, bovine serum albumin; BS, Prolyve BS. A neutral enzyme composed of metalloprotease produced by fermenta-
tion using a selected strain of Bacillus subtilis.
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and increases low molecular peptides (Ab Rahman et al., 2019; 
Ahmed & Chun, 2018; Lee et al., 2021). Moreover, the subcritical 
water hydrolysis might only demand up to 60 minutes during the 
hydrolysis process, faster than the enzymatic hydrolysis (Choi et 
al., 2017). However, these optimum working environments and 
periods are driven by objectives, targeted bioactive peptides prod-
ucts, body parts, and species. For example, the optimum condi-
tion to obtain the highest protein yield from gills and viscera of 
unspecified marine fish was at 180℃ for 5 minutes (Ab Rahman 
et al., 2019). In contrast, the strongest functional activities from 
tuna skin can be obtained after hydrolysis at 280℃ for 5 min 
(Ahmed & Chun, 2018). Meanwhile, the optimum condition for 
abalone viscera was at 170℃ for 1 h to obtain the strongest an-
tioxidant activities of the hydrolysate (Hao et al., 2019). Another 
study displays that the optimum condition was between 170℃ 

to 230℃ for 15 minutes to obtain maximum protein extract and 
low molecular peptides (< 1 kDa) from comb pen shell (Atrina 
pectinata) viscera (Lee et al., 2021).

Health Benefit Effects of Bioactive Peptides 
Derived from Marine By-Products

Antioxidant peptide
Oxidation is a necessary metabolism in the vertebrate and the 
human body. However, it generates reactive oxygen species 
(ROS) and free radicals, which disrupt homeostasis that allows 
oxidative stress (Luan et al., 2020; Pisoschi et al., 2021; Rahman 
& Rahman, 2021). Oxidative stress can be excessively destruc-
tive for cells (Luan et al., 2020; Pisoschi et al., 2021; Rahman & 
Rahman, 2021), which can lead to several diseases over time, 

Fig. 1. Subcritical water hydrolysis extraction process.
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including heart disease (Cortassa et al., 2021; Vujic et al., 2021), 
stroke (He et al., 2020; Taira et al., 2020), arteriosclerosis (Car-
mona-Maurici et al., 2020; Lian et al., 2019; Varona et al., 2017), 
diabetes (Michurina et al., 2020; Pal et al., 2020) and cancer 
(Shrivastava et al., 2021; Zahra et al., 2020). Furthermore, the 
oxidation of lipids by ROS is of great concern to the food indus-
try and consumers because it causes food deterioration and the 
production of toxic compounds (Wang et al., 2016; Wang et al., 
2018; Wang et al., 2019b; Wang et al., 2021). Lipid peroxidation 
is a problem in the food industry and human health (Peña-Bau-
tista et al., 2019; Vijayan et al., 2021).

Antioxidants can protect the human body against free rad-
icals and ROS effects. They may inhibit the progress of many 
chronic diseases and lipid peroxidation occurring in the human 
body by interrupting the radical chain reaction of oxidation (Lu 
et al., 2020; Luo et al., 2021; Vijayan et al., 2021; Zahra et al., 
2020). Moreover, antioxidants protect foodstuffs against deteri-
oration by lipid peroxidation. They are usually used as preser-
vatives in food products by directly adding as additives or in-
directly through diffusion from packaging material (Feki et al., 
2021; Kongkaoroptham et al., 2021; Mancini et al., 2017; Sellimi 
et al., 2017). Several synthetic antioxidants such as butylated 
hydroxytoluene (da Cruz et al., 2019; de Jesus et al., 2020; Zhou 
et al., 2019), tert-butylhydroquinone (de Jesus et al., 2020; Sal-
manzadeh et al., 2018; Ye et al., 2018), butylated hydroxyanisole 
(Caleja et al., 2017; da Cruz et al., 2019; de Jesus et al., 2020), 
and propyl gallate (Gálico et al., 2015; Salmanzadeh et al., 2018), 
are generally used in the food products to inhibit deterioration. 
However, there is a strict safety standard for synthetic antiox-
idants application in food products (Salmanzadeh et al., 2018; 
Xu et al., 2021; Ye et al., 2018). Hence, natural antioxidants have 
gained consumer preferences regarding their potential health 
benefits since they have little or no side effects (Salmanzadeh et 
al., 2018; Xu et al., 2021).

Several studies have shown that peptides derived from ma-
rine by-products possess potent antioxidant properties (Li et al., 
2021; Nikoo et al., 2021a; Nikoo et al., 2021b; Zamorano-Apo-
daca et al., 2020) (Table 2). The antioxidant can prevent oxi-
dation by donating a hydrogen atom or an electron to radicals 
formed from unsaturated lipids and can interrupt these radical 
chain reactions by removing initiators or radical intermediates 
from the medium through the inactivation of metal catalysts 
(Neha et al., 2019; Pisoschi et al., 2021; Siddeeg et al., 2021). All 
functional properties of the peptides are highly dependent on 
their molecular weight. Shorter size peptides are believed to 

have higher inhibition activities of scavenging and lipid peroxi-
dation when compared to the long-chain peptides (Hajfathalian 
et al., 2018; Zamorano-Apodaca et al., 2020). Several antioxi-
dant peptides derived from marine by-products such as frame, 
skin, and viscera are summarized in Table 3.

A study on the antioxidant activity of protein hydrolysate 
(Table 4) from abalone viscera revealed that the hydrolysis 
process using pepsin, papain, trypsin, and neutral protease had 
similar strength for scavenging activity (half maximal inhibitory 
concentration [IC50] 500 µg/mL) of 2,2-diphenyl-1-picrylhy-
drazyl (DPPH) (Zhou et al., 2012). Meanwhile, the antioxidant 
activity of protein hydrolysate was higher when squid pen was 
hydrolyzed with bacterial endopeptidase high-throughput 
(40%–45%) and trypsin (40%–45%) rather than pepsin (35%–
40%) (Shavandi et al., 2017). Protein hydrolysate of tuna had 
higher antioxidant activity after its dark muscle was hydrolyzed 
with protease XXIII (41.0%) rather than orientase (31.5%) (Hsu, 
2010). Lastly, protein hydrolysate of stripped weakfish by-prod-
uct obtained with alcalase had higher DPPH activity (60%–70%) 
rather than with protamex (50%–60%) (Lima et al., 2019).

Antihypertensive peptides
Cardiovascular disease (CVD) is one of four noncommunicable 
diseases that took the biggest number of casualties around the 
globe. There were 17.9 million people that sadly passed away 
due to this disease in 2016. The major risk factor for CVD is 
blood pressure elevation or hypertension (World Health Or-
ganization, 2020). Renin and angiotensin-converting enzyme 
(ACE) are the two key enzymes associated with the renin-angio-
tensin system, the important endocrine system which regulates 
blood pressure (Te Riet et al., 2015). ACE plays an important 
role in raising blood pressure since it regulates the inactivation 
of bradykinin. ACE can raise blood pressure by converting an-
giotensin I released from angiotensin by renin into biologically 
active angiotensin II (Abdelhedi & Nasri, 2019; Pujiastuti et al., 
2019; Te Riet et al., 2015). Therefore, inhibiting ACE and renin 
may positively contribute to hypertension treatment (Abachi 
et al., 2019; Pujiastuti et al., 2019). Many synthetic inhibitors of 
ACE and renin such as aliskiren, captopril, enalapril, lisinopril, 
and alcacepril have been widely used. However, the natural 
antihypertensive is more desirable for future prevention and hy-
pertension treatment due to its low adverse side effects (Abachi 
et al., 2019; Abdelhedi & Nasri, 2019).

In addition, the whole body of Oratosquilla woodmasoni 
from the by-product of marine captured fisheries had antioxi-
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Table 2. Biological activity of peptide from by-product fisheries and aquaculture
By product source Bioactive peptide extraction Benefits References

Skate cartilage Papain and thermal hydrolysis Improve free radical scavenging activity Li et al., 2021

Pacific white shrimp mix by-products 
(cephalothorax, shells, and 
pleopods)

Trypsin autolytic hydrolysis Inhibit oxidative reactions by scavenging hydroxyl 
radicals

Nikoo et al., 2021b

Various marine fish by-products (skin, 
heads, and skeletons)

Collagen hydrolysis Potential antioxidant ingredients for functional foods 
and pharmaceuticals industry

Zamorano-Apodaca et al., 
2020

Abalone viscera Enzymatic hydrolysis (papain, trypsin, 
neutral protease, alkali protease, 
pepsin)

Potential source of antioxidant Zhou et al., 2012

Squid pen Trypsin hydrolysis Enhance antioxidant activity Shavandi et al., 2017

Tuna dark muscle Orientase and protease XXIII hydrolysis Generate strong DPPH radical-scavenging activity and 
antioxidative activity

Hsu, 2010

n-Hexane/ethanol extraction Inhibit the growth of obesity related diseases through 
the suppression of hepatic triacylglycerol and 
cholesterol accumulation

Maeda et al., 2017

Stripped weakfish by-products (skin 
and bone)

Alcalase and protamex hydrolysis Potential natural antimicrobial and antioxidant 
preservatives in food

Lima et al., 2019

Bycatch shrimp Oratosquilla 
woodmasoni waste

Thermolysin hydrolysis Produce ACE-I inhibition peptide that could be utilized 
as anti-hypertentsive and free radicals prevention

Joshi et al., 2020

Pearl oyster shell Orientase hydrolysis Potent ACE inhibitory activity Sasaki et al., 2019

Squid skin Pepsin hydrolysis Good source of ACE inhibition peptide Lin et al., 2012

Tuna blood Enzymatic hydrolysis (alcalase, 
neutrase, flavourzyme)

Exhibit strong antioxidant and ACE inhibitory activity Mongkonkamthorn et al., 
2020

Shrimp shell Protease hydrolysis Demonstrate higher ACE inhibitory activity compared 
to hypertension drug (captopril)

Mechri et al., 2020

Marine catfish skin Chemical extraction Possess anticancer activity against human colon 
cancer line 

Raja et al., 2020

Octopus ink Dichloromethane extraction Potential immunomodulatory and anti-proliferative 
against colorectal and breast cancer

Hernández-Zazueta et al., 
2021

Cuttlefish posterior salivary gland 
toxin

SDS-PAGE extraction Exhibit great cytotoxicity against breast cancer and 
inhibit penetration of metastatic cells

Karthik et al., 2017

Rainbow trout skin Flavourzyme and alcalase hydrolysis Possess antioxidant and anticancer activities Yaghoubzadeh et al., 2020

Flathead by-products (head, back-
bone, skeleton)

AFP hydrolysis Potent antioxidant and cancer cells cytotoxic agents Nurdiani et al., 2017

Blue mussel by-product Protamex hydrolysis Exhibit inhibitory activity against cancer cells Beaulieu et al., 2013

Sardine by-products (viscera, heads, 
skins, and edges)

Isoelectric precipitation Improve LCAT activity and reduce complications 
related to obesity 

Affane et al., 2018

Skate skin Collagen extraction Demonstrate anti-obesity impact Woo et al., 2018

Squid by-products (viscera and ink 
sacs)

Protease hydrolysis Suppress the activity of gram-negative and gram-
positive bacteria

Jiang et al., 2018

Salmon by-products (bones, fins, and 
tails)

Protease hydrolysis Enhance copper-binding capacity Vo & Pham, 2020

Giant croaker skin Neutral protease hydrolysis Potential immunomodulatory agent Yu et al., 2020

DPPH, 2,2-diphenyl-1-picrylhydrazyl; ACE, angiotensin-converting enzyme; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; AFP, acid fungal protease; LCAT, leci-
thin-cholesterol acyltransferase.
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dant activities that give nutraceutical industries more benefits 
(Joshi et al., 2020). A study on pearl oyster (Pinctada fucata) 
revealed hexapeptide that has ACE inhibitory properties (82.4%) 
from its shell (Sasaki et al., 2019). Another study also showed 
that blood from tuna and squid skin from Dosidicus eschrichitii 
have similar ACE inhibitory properties as well (IC50 0.28 mg/
mL and 0.33 mg/mL, respectively) (Lin et al., 2012; Mong-
konkamthorn et al., 2020). Moreover, protein hydrolysate from 
shrimp captured by-product, Metapenaeus monoceros, had 
strong ACE inhibitory activities (IC50 71.52%) than the hyper-
tension drug, captopril (IC50 85.33%) (Mechri et al., 2020).

Anticancer peptides
Cancer is the second largest non-communicable diseases world-
wide that had caused 9 million deaths in 2016 (World Health 
Organization, 2020). Cancer is complex because it is several dis-
eases caused by uncontrolled growth of cells. Genetic mutation 
in normal cell alters cell function and growth that turns into a 
cancer cell, and thus it is considered a genetic disease or cellular 
disease. Moreover, this cellular alteration also causes disruption 
and even deterioration to an adjacent cell, tissue, and organ 
in the body (Miller, 2018; Papaccio et al., 2017; Wellenstein & 
de Visser, 2018). Recently, there have been four treatments for 
cancer such as mechanical treatment (surgery), physical treat-
ment (radiotherapy), chemical treatment (chemotherapy), and 
biological treatment (immunotherapy) (Link, 2019). A natural 

product can be used for cancer treatments (Link, 2019). Previ-
ous studies show that protein extract from marine by-products, 
such as skin and even visceral organs, had anticancer activities. 
For example, protein-rich extract from Tachysurus dussumieri 
skin revealed anticancer properties against the proliferation of 
colon cancer cells. Moreover, it also induced cell cycle arrest 
and even apoptosis of the cells (Raja et al., 2020). Anticancer 
properties were also observed from Octopus vulgaris ink extract 
that constrained colorectal cancer cell proliferation by inducing 
apoptosis (Hernández-Zazueta et al., 2021).

The marine natural product has a wide range of molec-
ular size and chemical diversity that could not be chemically 
synthesized and could give more benefits for treatments due 
to the complex physiological process of cancer (Link, 2019; Lu 
et al., 2021; Patra et al., 2020). For instance, hemocyanin from 
marine gastropods shows antitumor and immunogenic prop-
erties (Mora Román et al., 2019; Nigam et al., 2019). This im-
munomodulatory activity is important for biological treatment 
because the tumor microenvironment greatly alters non-tumor 
adjacent cells and matrix phenotypes that hinder the natural 
body immune system (Kumar, 2020). In the other case, protein 
extract from salivary gland of cuttlefish Sepia pharaonis inhibit-
ed cell proliferation and induced apoptosis, and suppressed can-
cer cell infiltration to adjacent cells. Thus, the salivary extract 
becomes an anti-metastasis agent (Karthik et al., 2017).

As previously mentioned, anticancer activities from protein 

Table 3. The antioxidant peptides derived from marine by-product
Organism Body part Antioxidant peptides Reference

Sardinella aurita •	 Head
•	 Viscera

•	 Gly-Gly-Glu (263.08 Da)
•	 Leu-His-Tyr (431.2 Da)
•	 Gly-Ala-Trp-Ala (403.1 Da)
•	 Leu-Ala-Arg-Leu (471.3 Da)
•	 Gly-Ala-Leu-Ala-Ala-His (538.2 Da)

Bougatef et al., 2010

Thunnus tonggol Dark muscle •	 Pro–Met–Asp–Tyr–Met–Val–Thr (756 Da)
•	 Leu–Pro–Thr–Ser–Glu–Ala–Ala–Lys–Tyr (978 Da)

Hsu, 2010

Cynoscion guatucupa •	 Skin
•	 Bone

•	 IELIEKPMGIF (1,288.71 Da)
•	 RADLSRELEEISERL (1,814.95 Da)

Lima et al., 2019

Raja kenojei Skin •	 Pro–Gly–Pro–Leu–Gly–Leu–Thr–Gly–Pro (975.38 Da)
•	 Gln–Leu–Gly–Phe–Leu–Gly–Pro–Arg (874.45 Da)

Lee et al., 2011

Gadus macrocephalus Skin •	 Thr-Cys-Ser-Pro (388 Da)
•	 Thr-Gly-Gly-Gly-Asn-Val (485.5 Da)

Ngo et al., 2011

Haliotis discus hannai Whole body ATPGDEG (752 Da) Qian et al., 2018

Oratosquilla woodmasoni Muscle Asn-Gly-Val-Ala-Ala (431 Da) Joshi et al., 2020

Pinctada fucata Shell Gly-Val-Gly-Ser-Pro-Tyr (578.7 Da) Sasaki et al., 2019

Dosidicus gigas Skin DPVAPGGPQP Alemán et al., 2013
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hydrolysate of marine by-products disregard the molecular size 
of protein extract. However, it shows that small molecular size 
tends to have stronger bioactivities. For instance, low molecular 
weight peptide (< 3kDa) retained from protein hydrolysate of 
rainbow trout (Oncorhynchus mykiss) skin has stronger cytotox-
icity (IC50 0.249 mg/mL) on colon cancer cells than higher mo-
lecular weight (> 3 kDa) (IC50 2.738 mg/mL) that hindered cell 
proliferation (Yaghoubzadeh et al., 2020). A similar result shows 
that small molecular size peptides (< 3 kDa) isolated from Flat-
head by-products were reported to inhibit the growth of HT-29 
colon cancer cells up to 91.04% (Nurdiani et al., 2017). On the 
other hand, 50 kDa fraction from protein hydrolysate of Mytilus 
edulis by-product had been reported to have anticancer activi-

ties on 85% of colon cancer cells (Beaulieu et al., 2013).

Antiobesity peptides
Obesity is a significant threat to human health worldwide, and 
its global prevalence has increased up to 1.5 times since 2000 
(World Health Organization, 2020). This epidemic poses a 
risk for several diet-related chronic diseases, including type II 
diabetes mellitus, CVD, hypertension and stroke, and certain 
forms of cancer. The health consequences of obesity range from 
increased risk of premature death to severe chronic conditions 
that reduce the overall quality of life (Blüher, 2019; Chooi et al., 
2019; World Health Organization, 2020). The proposed mech-
anisms to prevent and treat overweight and obesity such as 

Table 4. Antioxidant activity of peptide from by-product fisheries and aquaculture
By product source Protease / peptide extraction Scavenging activity

(Activity value or IC50 at certain condition i.e. sample concentration or 
certain degree hydrolysis)

DPPH Hydroxyl radical

Abalone Haliotis discus hannai viscera (Zhou et al., 
2012)

Alkali protease IC50; 7 mg/mL IC50; 10 mg/mL

Neutral protease IC50; 4 mg/mL IC50; 11 mg/mL

Papain IC50; 4 mg/mL IC50; 17 mg/mL

Pepsin IC50; 4 mg/mL IC50; 5 mg/mL

Trypsin IC50; 4 mg/mL IC50; 23 mg/mL

Arrow squid Nototodarus sloanii pen (Shavandi et al., 
2017)

Bacterial endopeptidase (HT) 40%–45%; 4 mg/mL NA

Trypsin 40%–45%; 4 mg/mL NA

Pepsin 35%–40%; 4 mg/mL NA

Squid Ommastrephes bartrami (Song et al., 2016) Endogenous protease IC50; 0.231 mg/mL IC50; 0.74 mg/mL

Salmon Salmo salar skin (Zhang et al., 2022) Alcalase NA 70%–80%; 4 mg/mL

Neutrase NA 50%–60%; 4 mg/mL 

Flavourzyme NA 30%–40%; 4 mg/mL

Protamex NA 40%–50%; 4 mg/mL

Rainbow trout Oncorhynchus mykiss skin 
(Yaghoubzadeh et al., 2020)

Alcalase 40%–45%; 0.8 mg/mL NA

Flavourzyme 45%–50%; 0.8 mg/mL NA

Tuna dark muscle (Saidi et al., 2018) Prolyve BS 30%–35%; 2 mg/mL 35%–40%; 2 mg/mL

Tuna Thunnus tonggol dark muscle (Hsu, 2010) Orientase 31.5%; 3 mg/mL NA

Protease XXIII 41.0%; 3 mg/mL NA

Striped weakfish Cynoscion guatucupa skin and 
bones (Lima et al., 2019)

Alcalase 50%–60%; hydrolysis at 10% 
DH

70%–80%; hydrolysis at 10% DH

60%–70%; hydrolysis at 15% 
DH

40%–50%; hydrolysis at 15% DH

Protamex 50%–60%; hydrolysis at 10% 
DH

30%–40%; hydrolysis at 10% DH

50%–60%; hydrolysis at 15% 
DH

40%–50%; hydrolysis at 15% DH

IC50, half maximal inhibitory concentration; DPPH, 2,2-diphenyl-1-picrylhydrazyl; HT, protein/protease prepared from bacteria using high-throughput preparation;  NA, not available; BS, 
Prolyve BS. A neutral enzyme composed of metalloprotease produced by fermentation using a selected strain of Bacillus subtilis.; DH, degree of hydrolysis.
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increased satiety and thermogenesis, accretion of fat-free mass, 
and lowering food intake (World Health Organization, 2010).

Relating to dietary intake, natural product from marine 
based by-product that has benefits to ameliorate overweight and 
obesity is shown in Table 5. Protein hydrolysate from Sardina 
pilchardus by-products (viscera, head, skin, and fins) has been 
reported to reduce food intake and body weight gain (Affane et 
al., 2018). The essential amino acids in fish protein hydrolysate 
alter adipogenesis by suppressing the genetic expression of key 
genes for preadipocytes differentiation and lipid accumulation in 
adipose tissue (from 3.14% reduced to 2.58%) (Lee et al., 2017). 
Moreover, a previous study shows that protein hydrolysate from 
dark muscle tuna increased fatty acid oxidation in mitochondria, 
promoted lipid excretion, limited lipid absorption by the intestine 
wall, and suppressed lipid deposition in adipocytes tissue (from 
~0.35 mg/g decreased to ~0.25 mg/g) (Maeda et al., 2017). Simi-
larly, a peptide from skate (Raja kenojei) skin shows anti-obesity 
activities by restraining lipogenesis and adipocyte differentiation 
and allowing more fatty acid oxidation. Adipose tissue size re-
duced from 3% (control) to 1.5% (skin) (Woo et al., 2018).

Other biological activities
Protein hydrolysate obtained from marine by-products has a 
wide range of biological activities due to various compounds and 
metabolites of marine organisms. Antibacterial activity is another 
biological activity from protein hydrolysate that can inhibit bac-
terial growth (Kang et al., 2019a). A previous study shows that 
protein extract from squid by-products (viscera and ink sac) has 
bioactivities to inhibit gram-negative and gram-positive bacteria 
(Jiang et al., 2018). White shrimp (Litopenaeus vannamei) cara-
paces has antibacterial activities after the conjugation with glu-

cosamine (Djellouli et al., 2020). Furthermore, the application of 
protein hydrolysate from shrimp by-products in food processing 
has been studied in the bakery to underline improved shelf-life 
period, palatability, and bread quality. It is suggested that glutamic 
acid in protein hydrolysate is responsible for the better taste and 
low molecular weight peptide for the growth of fermentative 
bacteria (Karimi et al., 2020). Meanwhile, protein hydrolysate 
obtained from yellowfin tuna (Thunnus albacores) by-products 
(viscera) has similar biological activity against bacterial growth. 
Moreover, its bioactivities are inversely related to molecular 
weight. It is suggested that the low molecular weight of peptides 
has better interaction and penetration to disrupt bacterial cell 
wall structure (Pezeshk et al., 2019).

Protein hydrolysate also possesses anti-inflammation and 
immunomodulatory activities. For instance, protein hydroly-
sate from sardine (S. pilchardus) by-products of the canning 
industry has anti-inflammation properties. Its low molecular 
weight fraction (< 10 kDa) hinders inflammation regulation in 
endothelial cells (Vieira et al., 2018). Meanwhile, protein hydro-
lysate from giant croaker (Nibea japonica) skin promotes the 
immune system through cell-mediated immunity, such as in-
creased splenocyte proliferation, and humoral immunity, such 
as elevated immunoglobin level (Yu et al., 2020). Together with 
antibacterial properties, marine organisms are potential sources 
for pharmaceutical industries (Kang et al., 2019a).

As indicated previously, marine by-products have a wide 
range of biological activities. Its protein hydrolysate also has a 
metal chelating ability due to the aromatic ring of specific ami-
no acids in its chain (Lima et al., 2021). For instance, protein 
hydrolysate from salmon by-products has a copper-binding 
capacity which is essential to delivering copper into the hu-

Table 5. Anti-obesity activity of peptide from by-product fisheries and aquaculture
Protein source BW gain or final BW Food intake Adipose tissue Total cholesterol Fecal total lipid

Sardines Sardina pilchardus 
(Affane et al., 2018)

Viscera, heads, skins and 
edges

0.17 g/day/rat 16.13 g/day/rat 2.58 1.51 mmol/L 76.8 mg/day/rat

Fillet 0.64 g/day/rat 20.49 g/day/rat 2.87 1.60 mmol/L 68.5 mg/day/rat

Control (Casein) 1.10 g/day/rat 25.27 g/day/rat 3.14 2.20 mmol/L 56.9 mg/day/rat

Tuna Thunnus orientalis 
(Maeda et al., 2017)

Dark muscle 0.50 g/day 129 g 4.19 ~0.25 mg/g NA

Control (Casein) 0.45 g/day 124 g 3.95 ~0.35 mg/g NA

Tuna (Lee et al., 2017) Skin 0.216 g/day/rat 33.24 g/day/rat Smaller cell size 1,670 mg/L NA

Control (high fat diet) 0.365 g/day/rat 35.30 g/day/rat Bigger cell size 2,245 mg/L NA

Skate Raja kenojei (Woo et 
al., 2018)

Skin 33.3 g 1.5–2 g/day 1.5%–2% ~400 mg/L NA

Control (high fat diet) 36.6 g 2–2.5 g/day 2.5%–3% ~400 mg/L NA

BW, body weight; NA, not available.
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man body (Vo & Pham, 2020). It is crucial to attenuate copper 
deficiency which will cause anemia, fetal death, and Menkes 
disease (Chen et al., 2020a). Moreover, iron and calcium are 
essential minerals for respiration, cellular communication, and 
body movement. Overload or deficiency of these metals results 
in dire conditions. Thus, a metal-chelating peptide is crucial to 
ameliorate the effects by transporting the metal into the body 
or absorbing metal ions to remove the excess metal in the body 
(Walters et al., 2018). In this regard, calcium-binding peptides 
have been extracted from Pacific cod (Gadus macrocephalus) 
by-product (bone) (Zhang et al., 2019a), and iron-binding pep-
tides as well from cod skin (Wu et al., 2017).

Potential Applications of Bioactive Peptides 
Derived from Fish By-Products

A significant number of research on producing functionally ac-
tive peptides from marine waste have been carried out. To date, 
antioxidant, antihypertensive, anticancer, antimicrobial, and min-
eral binding peptides from marine by-products have been most 
identified for their beneficial health effects. A successfully finding 
of bioactive peptides from marine waste suggests that they can 
potentially be used as valuable ingredients for a comprehensive 
array of products, especially in biomedicine. Fishbone peptides 
from Johnius belengerii has been studied for their bioactive po-
tential in the biomedical application of osteoporosis treatment. Its 
peptides promote osteogenesis through increased genetic expres-
sion for osteoblastic differentiation and mineral accumulation 
(Heo et al., 2018). Meanwhile, collagen and gelatine are essential 
compounds in connective tissue and extracellular matrix (He et 
al., 2019; Nurilmala et al., 2020). Collagen has numerous applica-
tions in the biomedical and pharmaceutical industries such as for 
wound healing and skin regeneration (Jang et al., 2018; Sghayyar 
et al., 2020; Wei et al., 2019), a drug delivery (Kang et al., 2019b; 
Song et al., 2018), orthopedics (Gao et al., 2020; Han et al., 2021), 
angiogenesis (Chen et al., 2020b; Kook et al., 2018), the medical 
implant (Knopf-Marques et al., 2019; Liu et al., 2020; Versteegden 
et al., 2018). Fish gelatine from hydrolytic degradation of collagen 
can be obtained from marine by-products such as skin, scales, 
and bones of bigeye snapper (Priacanthus hamrur) (Radhika 
Rajasree et al., 2020), tuna (Thunnus albacares) (Nurilmala et al., 
2020), skipjack tuna (Katsuwonus pelamis) (Yang et al., 2019), 
salmon (Dave et al., 2019), barred mackerel (Scomberomorus 
commerson) (Mirzapour-Kouhdasht et al., 2020) and pacific cod 
(Gadus macrocephalus) (Wu et al., 2017). The utilization of fish 

skin collagen and gelatin has gained a greater preference from 
industries, especially for medical uses, since the marine product 
does not contradict any religious issues (Nurilmala et al., 2020; 
Yuswan et al., 2021).

The optimal exploitation of marine bioactive peptides from 
by-products for human consumption may bring an exciting 
scientific and technological challenge while at the same time 
offering the potential for successful commercialization. Many 
scientific, technological, and regulatory aspects must be resolved 
before these marine by-product peptides can be optimally uti-
lized. Firstly, it is necessary to treat the by-products as a valuable 
raw material. Best handling and sorting of the by-product are 
essential to reduce enzymatic degradation and microbial spoilage. 
Secondly, since the production of bioactive peptides from marine 
by-products may be scaled up to an industrial level, there is a 
need to develop an industrial-friendly technology. Methodolo-
gies for pilot-scale extraction and the purification of the bioactive 
peptides are critical for the commercial exploitation of peptides. 
Furthermore, to isolate the desired molecular weight and func-
tional properties of the peptides, suitable extraction, and purifi-
cation methods are needed. Thirdly, a clinical test of the marine 
by-product peptides on the human body is a critical aspect. Up to 
now, most of the biological effects of the peptides have been test-
ed in animal models. In addition, the safety and quality standards 
of the peptide product should be assessed before the peptide 
product can be handed to the market.

Potential Resources of Marine By-Product 
Bioactive Peptides from Indonesia

Indonesia is one of the central fish-producing countries globally. 
The total production volumes of capture and aquaculture fish-
eries in 2017 were 7,071,453 tons and 16,114,991 tons, respec-
tively (Ministry of Marine Affairs and Fisheries, 2017). Fisheries 
by-products that have been produced by fisheries industries, 
including capture, aquaculture, and processing activities in In-
donesia, have not been used optimally (Irianto et al., 2014). A 
marine by-product from the fisheries industry is raw materials 
that can be used to generate value-added products such as ma-
rine bioactive peptides. Those raw materials are underutilized 
fish parts such as cut-offs, fishbone, skin, viscera, and blood 
(Hayes & Flower, 2013).

Indonesia, consisting of 18,110 islands, has high species rich-
ness and endemicity of marine biodiversity, and it is part of the 
coral reef triangle (Asaad et al., 2018; Hutomo & Moosa, 2005). 
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This high marine biodiversity has become essential for various 
marine bioactive natural products, including protein and peptides 
(Chasanah, 2008; Fawzya & Irianto, 2020; Putra & Murniasih, 
2016). Nine major marine fish obtained from one of the main 
fishing ports in Indonesia contained up to 86.56% total protein 
(Priatni et al., 2018). Moreover, its marine by-products, such as 
fish skin obtained from red snapper, contained easily digested 

collagen peptides (Wibawa et al., 2015). Similarly, collagen pep-
tides obtained from tuna skin waste from the processing industry 
have antioxidant properties (IC50 251.23 ppm) and antiglycation 
(4.36%) (Nurilmala et al., 2019; Nurilmala et al., 2020).

Several studies revealed that some marine fisheries 
by-products from Indonesia were utilized to retrieve their bio-
active peptides, components, and activity (Table 6). Dolphin 

Table 6. Biological activity from Indonesian marine by-product and its component
By product source Biological activity and value Protein, bioactive peptides, amino acids or nitrogen content 

of hydrolysate

Milkfish skin (collagen extraction) 
(Wibawa et al., 2015)

NA Protein (0.407 mg/mL)

Dolphin fish Coryphaena hippurus 
(Thenu et al., 2017)

NA Protein (19.16%), proline (3.32%), arginine (3.01%), serine 
(2.85%), phenylalanine (2.65%). Cystine, histidine, valine 
and methionine (< 2%) 

Mackerel Scomber japonicus heads 
(Setijawati et al., 2019)

Alternative peptone for bacterial growth medium. Improve 
biomass of Escherichia coli (from control 61.04% to 76.85%), 
Staphylococcus aureus (from control 48.24% to 56.08%), 
Salmonella thypi (from control 59.46% to 71.04%), and 
Aeromonas hydrophila (from control 49.83% to 54.15%)

Nitrogen (11.53%)

Grouper Epinephelus fuscoguttatus 
head (Jaziri et al., 2020)

Alternative peptone for bacterial growth medium. Improve 
biomass of E. coli (from control 42.81% to 64.63%) and S. 
aureus (from control 35.74% to 59.38%)

Peptone yield (4.61%–5.70%), protein (85.08%–86.43%), 
glycine (21.48%), glutamic acid (10.67%), alanine 
(10.26%), proline (8.99%), arginine (8.16%) and aspartic 
acid (7.60%). Tyrosine, and histidine were less than 3%

Parrotfish Scarus javanicus head 
(Jaziri et al., 2020)

Alternative peptone for bacterial growth medium. Improve 
biomass of E. coli (from control 25.87% to 50.33%) and S. 
aureus (from control 33.20% to 55.63%)

Peptone yield (3.27%–3.45%), protein (83.80%–86.67%), 
glycine (21.34%), glutamic acid (10.12%), alanine (8.97%), 
proline (8.94%), aspartic acid (7.76%), and phenylalanine 
(6.73%). Tyrosine and histidine were less than 3%

Parrotfish Chlorurus sordidus head 
(Prihanto et al., 2019)

Antioxidant (DPPH 58.2%) Protein (69.15%), glutamic acid (14.43%), aspartic acid 
(11.06%), leucine (8.48%), lysine (8.3%), glycine (7.63%) and 
alanine (7.41%). Serine and histidine were less than 3%

Milkfish Chanos chanos skin 
(Kusumaningtyas et al., 2019)

Antioxidant (ABTS 80%–90%) and antifungal (Candida albicans 
~5 Log CFU/mL)

NA

Grouper E. fuscoguttatus swim 
bladder (collagen hydrolysate) 
(Trilaksani et al., 2020)

Collagen extract suitable for cosmetic material Protein (75.20%), glycine (102.04%), proline (48.20%), alanine 
(41.11%), glutamic acid (35.68%), aspartic acid (19.98%), 
serine (18.02%)

Bigeye tuna Thunnus obesus skin 
(collagen) (Devita et al., 2021)

Antioxidant (DPPH 0.18–0.46 mg AAE/g) Protein (6.58%–16.37%)

Yellowfin tuna Thunnus albacares 
skin (collagen hydrolysate) 
(Nurilmala et al., 2019)

Antioxidant (IC50 251.23 ppm), antiglycation (4.36%) Glycine (175.75 mg/g), proline (70.44 mg/g), arginine (64.10 
mg/g), glutamic acid (58.37 mg/g), alanine (54.72 mg/g), 
aspartic acid (27.66 mg/g)

Mackerel by-product (Setijawati et 
al., 2020)

Alternative peptone for bacterial growth medium Soluble protein (0.98–2.10 g/L), lysine (16.73%), glutamic 
acid (12.74%), alanine (9.32%), aspartic acid (8.74%), 
proline (8.73%), arginine (6.91%)

Mackerel S. japonicus head (Nurdiani 
et al., 2022)

Antioxidant (DPPH 15.64%–36.95%) Serine (21.16%), glycine (13.27%), histidine (7.99%), aspartic 
acid (6.82%), alanine (6.74%), glutamic acid (6.17%)

Blue swimming crab Portunus 
pelagicus hepatopancreas 
(Fadilah et al., 2020)

NA Protein (49.21%), glutamic acid (3.75%), leucine (2.41%), 
arginine (2.13%), aspartic acid (1.96%), valine (1.84%), 
glycine (1.65%)

NA, not available; DPPH, 2,2-diphenyl-1-picrylhydrazyl; ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid; AAE, ascorbic acid equivalent; IC50, half maximal inhibitory concentration.
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fish (Coryphaena hippurus) roe is another by-product of the 
fishing industry in Indonesia that consists of 19.16% of protein. 
Seventeen amino acids have been discovered, such as proline 
(3.32%), arginine (3.01%), and serine (2.85%) (Thenu et al., 
2017). Protein hydrolysate from fish by-products could be uti-
lized as peptone, a component of bacterial growth medium. For 
instance, the by-product of the mackerel fishing industry has 
improved the bacterial growth of Escherichia coli to 76.85% in 
the positive control (Setijawati et al., 2019). Meanwhile, grouper 
and parrotfish heads have been documented to improve the 
bacterial growth of E. coli from control of 42.81% to 64.63% in 
grouper heads and 25.87% to 50.33% in parrotfish heads (Jaziri 
et al., 2020). Other parrotfish heads showed high antioxidant 
activity around 58.2% of its protein hydrolysate that contained 
69.15% of protein (Prihanto et al., 2019). Milkfish skin hydro-
lysate has not only antioxidant activity (2,2’-azino-bis(3-eth-
ylbenzothiazoline-6-sulfonic acid [ABTS] 80%–90%) but also 
antifungal activity of Candida albicans (5 Log CFU/mL) (Ku-
sumaningtyas et al., 2019). Moreover, fermented shrimp from 
shrimp by-products has been reported to have bioactive pep-
tides and improved taste (Hajeb & Jinap, 2012).

Conclusion

The increasing of marine by-products rich in protein gives 
concern to obtaining bioactive peptides to minimize waste 
and increase economic value in marine industries. Bioactive 
peptides recovery from marine by-products can be performed 
through several types of protein hydrolysis that will break pro-
tein molecules apart into the small molecular size of peptides. 
Subcritical water hydrolysis is more superior hydrolysis process 
by having a fast hydrolysis process and no additional digestion 
enzymes. Recovered peptides from marine by-products show a 
wide range of biological activities favorable for biomedicine ap-
plication, for instance, in cancer treatment. Thus, valorization of 
marine by-products through obtaining bioactive peptides gives 
benefits to the environment and human health as well. How-
ever, scale-up applications should be considered and prepared 
together with stakeholders to optimize this marine bioactive 
peptide exploitation from marine by-products.
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