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Introduction 

Olive flounder (Paralichthys olivaceus) is one of the most 
farmed fish in South Korea. Its average production over the past 

five years (2018–2022) was 42,398 tons, accounting for 48.82% 
of the total production and making it a very important fish spe-
cies at an industrial level (Statistics Korea, 2024). Although olive 
flounder aquaculture technology continues to develop, environ-
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Abstract
The strategy of cultivating healthy fish by manipulating their gut microbiota composition using probiotics is crucial for establish-
ing sustainable fish farms. Information on the gut microbiota composition of healthy fish is important for the efficient develop-
ment of probiotics and the aquaculture strategies that would apply them. This study assessed the gut microbiota composition 
of farmed olive flounder according to the growth stage to provide useful information for the development of probiotics. The fish 
were classified according to their weight, and the intestines of five juveniles weighing less than 100 g and five subadults weigh-
ing between 400 and 800 g were used for analysis. The results of alpha diversity analysis confirmed higher richness and diversity 
in the subadult group than in the juvenile group. Beta diversity analysis revealed clear boundaries and distances between the 
groups; however, individuals within each group were similar. The two groups showed marked differences in their gut microbi-
ota composition. Phylum-level analysis revealed that the most abundant phylum was Proteobacteria in the juvenile group and 
Firmicutes in the subadult group. Notably, genus-level analysis revealed that Vibrio accounted for more than 50% of the total 
composition in the juvenile group. Linear discriminant analysis effect size revealed that the genera Vibrio, Photobacterium, and 
Leuconostoc were representative of the juvenile group, whereas 19 genera, including Lactococcus and Vagococcus, were repre-
sentative of the subadult group. Thus, information on the representative microorganisms abundantly present in the intestines of 
healthy olive flounder can be considered for the selection and development of a probiotic genus for olive flounder farming.
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mental destruction, the emergence of fish pathogens, and insta-
bility in fishmeal supply due to the depletion of marine fishery 
resources negatively impact olive flounder production (Hasan 
et al., 2018; Lee et al., 2024). In this situation, probiotics are 
attracting attention as microbial additives that can help build 
eco-friendly fish farms, improve fish immunity, and enhance 
the digestibility of low-fishmeal feed (Jang et al., 2023).

Probiotics are defined as live microorganisms that provide 
beneficial health effects to the host when supplied in adequate 
amounts (FAO/WHO, 2001). They are considered to aid diges-
tion and absorption, stimulate immune cells, produce antibac-
terial substances to kill pathogens, and change the composition 
of the gut microbiota to a healthy one (Jang et al., 2021; Nawaz 
et al., 2018; Nayak, 2010). However, most probiotics applied to 
fish so far are lactic acid bacteria of terrestrial origin (Jang et 
al., 2023; Van Doan et al., 2020). The concept of host-associ-
ated probiotics has recently been reported, and attempts have 
been made to use microorganisms isolated from the intestines 
of fish as probiotics (Jang et al., 2021, 2022, 2023; Van Doan et 
al., 2020). However, lactic acid bacteria have also been mainly 
isolated and targeted for use as probiotics (Cathers et al., 2022; 
Kader et al., 2021). In fact, lactic acid bacteria, such as Lactoba-
cillus and Lactococcus, are considered beneficial for humans and 
animals (Jang et al., 2024). However, whether lactic acid bac-
teria are the optimal probiotic candidates for fish, which have 
different gut microbiota compositions from humans, remains 
questionable (Jang et al., 2023; Van Doan et al., 2020). More-
over, the growth temperature of most lactic acid bacteria is sim-
ilar to the human intestinal temperature. However, because the 
intestinal temperature of fish is relatively low, it may not be an 
optimal environment for lactic acid bacteria. Hence, to develop 
appropriate probiotics, it is important to know the gut microbi-
ota composition of healthy fish.

This study therefore assessed the gut microbiota compo-
sition of farmed olive flounder. Gut microbiota analysis was 
performed by dividing the fish into growth stages according to 
their weight. Moreover, the microbial composition, relative mi-
crobial abundance, and representative microorganisms at each 
stage were investigated.

Materials and Methods

Sample collection and DNA extraction
Ten farmed olive flounders were provided by the Aquafeed Re-
search Center of the National Institute of Fisheries Science (Po-

hang, Korea). The fish were weighed and divided into a juvenile 
group weighing less than 100 g and a subadult group weighing 
between 400 and 800 g (Niu et al., 2020). Then, the intestines of 
all the fish were aseptically separated. All contents present in the 
isolated intestines were collected, and the total bacterial DNA 
in the intestinal contents was isolated using the ZymoBIOMICS 
DNA Miniprep Kit (Zymo Research, Irvine, CA, USA), accord-
ing to the manufacturer’s instructions.

Sequencing
The V3–V4 region of the 16S rRNA sequence was amplified 
from the total DNA of the isolated microorganisms using the 
forward primer 5′-TCGTC GGCAG CGTCA GATGT GTA-
TA AGAGA CAGCC TACGG GNGGC WGCAG-3′ and the 
reverse primer 5′-GTCTC GTGGG CTCGG AGATG TGTAT 
AAGAG ACAGG ACTAC HVGGG TATCT AATCC-3′. PCR 
was performed with a Veriti 96-well thermal cycler (Applied 
Biosystems, Foster City, CA, USA) at the Core Facility Center 
for Tissue Regeneration, Dong-eui University (Busan, Korea). 
Moreover, 16S rRNA gene amplicon libraries for sequenc-
ing were prepared according to the method described in 16S 
Metagenomic Sequencing Library Preparation: Preparing 16S 
Ribosomal RNA Gene Amplicons for the Illumina MiSeq Sys-
tem (Illumina, San Diego, CA, USA) (Illumina, 2013).

Data analysis
Paired-end (2 × 300 bp) raw sequencing data were processed 
using Quantitative Insights Into Microbial Ecology 2 (QIIME2) 
v2023.5 (https://qiime2.org/) (Bolyen et al., 2019). The 5′ end 
of the primer was trimmed, and the 3′ end was truncated to 
the region where the average quality score per sequence loca-
tion was greater than 25. Sequences were filtered, denoised, 
and merged and chimeras were removed using the Divisive 
Amplicon Denoising Algorithm 2 (DADA2) pipeline (GitHub; 
https://github.com/benjjneb/dada2/); reads were clustered into 
amplicon sequence variants (ASVs) (Callahan et al., 2016). 
The ASVs were taxonomically assigned by the sklearn classifier 
method using SILVA database v138 (arb-silva, Bremen, Germa-
ny; https://www.arb-silva.de/). Reads not assigned to a taxon 
were removed from the analysis by using the taxa filter-table 
function. The results of alpha diversity analysis, beta diversity 
analysis, microbial composition analysis, and linear discrimi-
nant analysis (LDA) effect size (LEfSe) (Segata et al., 2011) were 
visualized using QIIME2 View (https://view.qiime2.org/) and 
MicrobiomeAnalyst (Microbiomeanalyst, Montreal, QC, Cana-



https://doi.org/10.47853/FAS.2024.e49 https://www.e-fas.org |  527

Su-Jeong Lee, et al.
Fisheries and Aquatic Sciences

da;  https://www.microbiomeanalyst.ca/) (Chong et al., 2020).

Results

On measuring the weight of the olive flounders, five fish were 
found to weigh less than 100 g; these fish were included in the 
juvenile group. The average weight of the fish in the juvenile 
group was 90.30 ± 4.47 g. The remaining five fish were included 
in the subadult group; their average weight was 505.80 ± 58.48 g.

Alpha diversity was compared between the groups based 
on three estimators: observed features, Shannon’s evenness in-
dex, and Pielou’s evenness index. The observed features metric 
was significantly higher (p = 0.028) in the subadult group (362 
± 82) than in the juvenile group (226 ± 75) (Fig. 1A). Shannon’s 
and Pielou’s evenness indices were also significantly higher (p 
= 0.009) in the subadult group (6.67 ± 0.64 and 0.79 ± 0.09, 
respectively) than in the juvenile group (3.78 ± 0.99 and 0.48 ± 
0.10, respectively) (Fig. 1B and 1C).

Beta diversity analysis of the olive flounder gut microbiota 
was performed based on the Jaccard distance (Fig. 2A and 2B) 
and Bray-Curtis distance (Fig. 2C and 2D) between the samples 
using the principal coordinate analysis (PCoA) plot. In all the 
results, the two groups showed clear boundaries, indicating that 
differences existed between the groups.

Assessment of the relative microbial abundance at the phy-
lum level based on the SILVA database revealed differences in 
microbial compositions between the two groups (Fig. 3). The 
most abundant phylum in the juvenile group was Proteobacte-
ria (76.13 ± 12.98%), followed by Firmicutes (19.58 ± 11.05%) 
and Actinobacteriota (2.03 ± 0.95%). On the other hand, the 
most abundant phylum in the subadult group was Firmicutes 
(56.88 ± 24.06%), followed by Proteobacteria (26.68 ± 12.40%) 
and Actinobacteriota (5.90 ± 5.51%).

Assessment of the relative abundance at the genus level re-
vealed that the most abundant genus in the juvenile group was 
Vibrio (58.06 ± 10.09%), followed by Photobacterium (14.33 ± 
9.67%) and Lactobacillus (6.93 ± 4.06%). The most abundant 
genus in the subadult group was Lactococcus (12.37 ± 6.50%), 
followed by Vagococcus (10.53 ± 5.88%) and Lactobacillus (7.07 
± 1.84%) (Fig. 4).

LEfSe revealed a total of three phyla in the juvenile and 
subadult groups based on an LDA score of 4. The phylum Pro-
teobacteria represented the juvenile group, while the phyla Fir-
micutes and Actinobacteriota represented the subadult group 
(Fig. 5A). A comparison of the observed phylum counts in the 
juvenile and subadult groups revealed that the Proteobacteria 
counts were 57,571 and 22,337, respectively; Firmicutes counts 
were 15,352 and 55,717, respectively; and Actinobacteriota 

Fig. 1. Alpha diversity analysis of the gut microbiota of olive flounder. Alpha diversity was analyzed based on observed features (A), 
Shannon’s evenness index (B), and Pielou’s evenness index (C). For all estimates, each group is represented as a boxplot with the median.
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counts were 1,580 and 5,516, respectively (Fig. 5B).
Based on an LDA score of 4, the genera Vibrio, Photobac-

terium, Leuconostoc, and Brevibacterium were considered to 
represent the juvenile group. On the other hand, 19 genera, in-
cluding Lactococcus, Vagococcus, and Streptococcus, represented 
the subadult group (Fig. 6).

Discussion

A striking feature of vertebrate evolution is that vertebrates 
have developed adaptive immunity, expressing antigen-specific 
receptors that allow them to recognize and remember microor-
ganisms (McFall-Ngai, 2007). Studies have suggested that this 
evolution of vertebrates has promoted the expansion of their 
resident microbiota (Maynard et al., 2012; McFall-Ngai, 2007). 
Therefore, while the gut microbiota of invertebrates consists 
of only a small number of species, that of vertebrates is more 
complex. Moreover, complex interactions exist between the 
host and the microbiota (Kostic et al., 2013; McFall-Ngai, 2007). 
In humans, infants are born with an essentially sterile intestine. 
Thereafter, dramatic changes can occur in microbial diversity 
during infancy. However, Bacteroidetes and Firmicutes gradu-
ally become prevalent in adults, a composition that is conserved 
across humans (Kostic et al., 2013). Similarly, in this study, dif-
ferences were noted in the gut microbiota diversity and compo-
sition of olive flounder depending on the growth stage. Alpha 

Fig. 3. Composition and relative abundance of bacterial phyla at different growth stages of olive flounder. The phylum 
accounting for more than 1% of the total microbial composition in each sample (A) and the group average (B) are shown. 

Fig. 2. Beta diversity analysis of the gut microbiota of 
olive flounder. Principal coordinate analysis (PCoA) plots are 
displayed based on the Jaccard distance (A and B) and Bray-
Curtis distance (C and D) between samples.
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Fig. 4. Composition and relative abundance of bacterial genera at different growth stages of olive flounder. The top 20 genera 
with high abundance in each sample (A) and the group average (B) are shown. 

Fig. 5. Linear discriminant analysis (LDA) effect size (LEfSe) of the differential abundance of taxa within the gut microbiota of 
olive flounder. (A) LDA score of the abundance of taxa at the phylum level. (B) Comparison of counts of corresponding taxa between 
groups. 
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diversity analysis revealed that the gut microbiota of the sub-
adult group was more diverse than that of the juvenile group. In 
addition, the gut microbiota composition at the phylum and ge-
nus levels was more diverse and complex in the subadult group.

Phylum-level analysis of the gut microbiota according to 
the growth stages of olive flounder revealed a clear difference 
between the groups; the abundance of Proteobacteria de-
creased, while that of Firmicutes increased. Proteobacteria was 
the predominant phylum in all fish. Studies using zebrafish have 
revealed that Proteobacteria can cause intestinal inflammation 
in fish (Brugman et al., 2009). On the other hand, Firmicutes 
may have a direct effect on fatty acid storage (Ley et al., 2006, 
2008; Turnbaugh et al., 2009). These results indicate that juve-
nile olive flounder may be prone to intestinal inflammation and 
that the gut microbiota composition may change to facilitate 
fat storage as the olive flounder progresses to subadult stages. 
Interestingly, in our previous study, the most abundant phylum 

in the gut microbiota of olive flounder, belonging to the juvenile 
group, was also Proteobacteria. Additionally, supplementation 
with appropriate probiotics decreased the proportion of Proteo-
bacteria and increased Firmicutes. The group fed probiotics had 
increased digestive enzyme activity (Lee et al., 2024). However, 
this interpretation cannot be confirmed until the effects of spe-
cific microorganisms are investigated in actual germ-free olive 
flounder.

In this study, Vibrio and Photobacterium were represen-
tative genera in the gut microbiota of juvenile olive flounder. 
Differences in the gut microbiota composition may exist as a 
characteristic of the diversity in fish (Egerton et al., 2018). Nev-
ertheless, studies conducted to date have shown that the genera 
Vibrio, Photobacterium, and Clostridium are key members of the 
fish gut microbiota (Egerton et al., 2018). Clostridium is associ-
ated with herbivorous diets, while Vibrio and Photobacterium 
are commonly found in carnivores (Egerton et al., 2018). This 

Fig. 6. Linear discriminant analysis (LDA) effect size (LEfSe) of the differential abundance of taxa at the genus level.



https://doi.org/10.47853/FAS.2024.e49 https://www.e-fas.org |  531

Su-Jeong Lee, et al.
Fisheries and Aquatic Sciences

study confirmed that Vibrio and Photobacterium are abundant 
in olive flounder, a carnivorous fish species, during the juvenile 
stage. However, changes are induced as it progresses to subadult 
stages.

Many studies are attempting to use probiotics to manip-
ulate the gut microbiota composition toward a healthy one 
(Jang et al., 2019, 2020). However, one of the biggest obstacles 
is the lack of data on the baseline gut microbiota composition 
of healthy fish (Monroig et al., 2013). Therefore, increasing the 
focus on collecting such data is essential to ensure that diet 
manipulation strategies achieve their full benefit (Monroig et 
al., 2013). In this study, Vibrio was abundant in the intestines 
of healthy juvenile flounder. Vibrio species are well known to 
cause vibriosis (Sanches-Fernandes et al., 2022). However, some 
of the reported Vibrio species are the main bacterial species 
producing polyunsaturated fatty acids (PUFAs) in the fish gut 
(Monroig et al., 2013). Therefore, studying the potential utiliza-
tion of Vibrio species as PUFA-producing bacteria for probiotic 
purposes could be a novel and interesting research avenue for 
fish health and nutrition (Monroig et al., 2013). Similarly, based 
on the results of this study, the use of microorganisms presents 
in subadult olive flounder, such as Lactococcus and Vagococcus 
species, could also be considered.
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