Additive biocomponents from catfish by-products enhance the growth of shrimp *Litopenaeus vannamei*

Pham Viet Nam¹, Tran Vy Hich², Nguyen Van Hoa³, Khuong V. Dinh^{2,4,*}, Nguyen Cong Minh⁵, Trang Si Trung^{3,*}

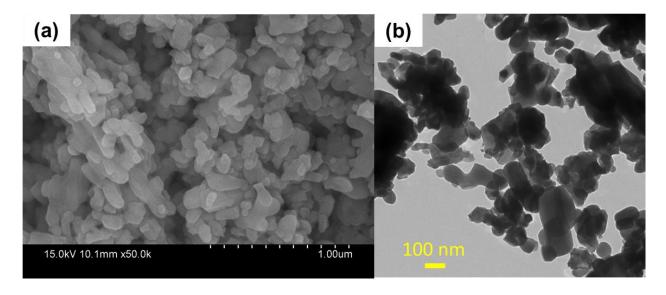
¹Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry

²Institute of Aquaculture, Nha Trang University

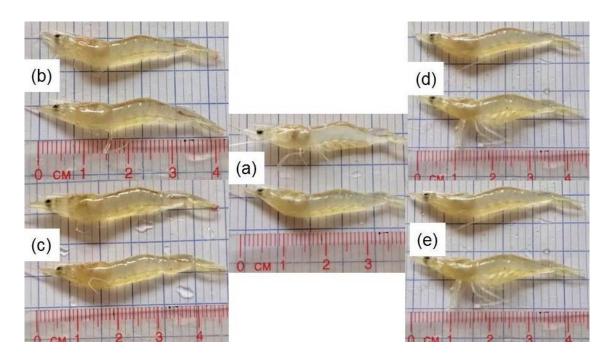
³Faculty of Food Technology, Nha Trang University

⁴Department of Biosciences, University of Oslo, Norway

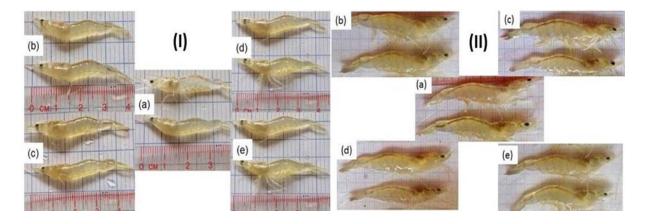
⁵Institute of Biotechnology and Environment, Nha Trang University


*Corresponding authors: <u>van.k.dinh@ibv.uio.no (Khuong V. Dinh)</u>; <u>trungts@ntu.edu.vn (TS</u>
Trung)

Running title: Fish protein hydrolysate and nano-hydroxyapatite enhances *Litopenaeus vannamei* growth


Supplementary materials

Supplementary Fig. S1. Photo of fish protein hydrolysate prepared from catfish bones.



Supplementary Fig. S2. (a) scanning electron microscope and (b) transmission electron microscope images of hydroxyapatite prepared from catfish bones.

Supplementary Fig. S3. Photographs of *Litopenaeus vannamei* at the age of 27 days of the 5 treatments (a) Treatment 1, (b) Treatment 2, (c) Treatment 3, (d) Treatment 4 and (e)

Treatment 5.

Supplementary Fig. S4. Photographs of *Litopenaeus vannamei* of the 5 treatments (I) 27 days and (II) 41 days old.